RETRACTED: A new perspective on hydrogen plasma equilibrium calculation along with the MHD potential energy

2017 ◽  
Vol 42 (2) ◽  
pp. 1048-1052 ◽  
Author(s):  
A. Salar Elahi ◽  
M. Ghoranneviss
2019 ◽  
Vol 9 (19) ◽  
pp. 4120 ◽  
Author(s):  
Jingsong Xie ◽  
Jinglong Chen ◽  
Yizhen Peng ◽  
Yanyang Zi

At present, the axis orbit (whirling) and the instantaneous angular speed (spinning) are important symptoms in the condition monitoring of rotor systems. However, because of the lack of research of the transient characteristics of axis orbit within a whirl cycle, the axis orbit cannot reflect the instantaneous characteristics of the rotation during one whirling cycle like the instantaneous angular speed. Therefore, in this paper, a new concept of instantaneous whirling speed of axis orbit within a whirling cycle is proposed and defined. In addition, the transient characteristics of instantaneous whirling speed are studied. Meanwhile, the response mechanisms are qualitative analyzed through the study of the work of the additional stiffness excitation and the conversion relationship between the kinetic energy and the potential energy. Then, the minimum of the relative instantaneous whirling speed (RWS) is proposed as a potential monitoring index for crack severity. The instantaneous whirling speed is a new attribute of axis orbit and a new perspective for the vibration analysis of cracked rotors. The addition of this new attribute significantly increases the effect of axis orbit for distinguishing normal and cracked rotors. The new analysis perspective and the new diagnosis index are potential supplements for crack diagnosis.


Open Physics ◽  
2010 ◽  
Vol 8 (3) ◽  
Author(s):  
Randell Mills ◽  
Ying Lu ◽  
Kamran Akhtar

AbstractFour predictions of Mills’ Grand Unified Theory of Classical Physics (GUTCP) regarding atomic hydrogen undergoing a catalytic reaction with certain atomized elements and ions which resonantly, nonradiatively accept integer multiples of the potential energy of atomic hydrogen, m · 27.2 eV wherein m is an integer, have been confirmed experimentally. Specifically, a catalyst comprises a chemical or physical process with an enthalpy change equal to an integer multiple m of the potential energy of atomic hydrogen, 27.2 eV. For He+ m = 2, due to its ionization reaction to He2+, and two H atoms formed from H2 by collision with a third, hot H can also act as a catalyst with m = 2 for this third H. The product is H(1/p), fractional Rydberg states of atomic hydrogen called “hydrino atoms” wherein n = 1/2, 1/3, 1/4, …, 1/p(p≤137 is an integer) replaces the well-known parameter n = integer in the Rydberg equation for hydrogen excited states. The predictions for the hydrino reaction of (1) pumping of the catalyst excited states, (2) characteristic EUV continuum radiation, (3) fast H, and (4) hydrino products were observed in multiple catalyst-hydrogen plasma systems.


2016 ◽  
Vol 113 (43) ◽  
pp. 12041-12046 ◽  
Author(s):  
Kyle Wm. Hall ◽  
Sheelagh Carpendale ◽  
Peter G. Kusalik

The molecular-level details of crystallization remain unclear for many systems. Previous work has speculated on the phenomenological similarities between molecular crystallization and protein folding. Here we demonstrate that molecular crystallization can involve funnel-shaped potential energy landscapes through a detailed analysis of mixed gas hydrate nucleation, a prototypical multicomponent crystallization process. Through this, we contribute both: (i) a powerful conceptual framework for exploring and rationalizing molecular crystallization, and (ii) an explanation of phenomenological similarities between protein folding and crystallization. Such funnel-shaped potential energy landscapes may be typical of broad classes of molecular ordering processes, and can provide a new perspective for both studying and understanding these processes.


2017 ◽  
Vol 19 (11) ◽  
pp. 115101
Author(s):  
Hailong GAO ◽  
Tao XU ◽  
Zhongyong CHEN ◽  
Ge ZHUANG

Author(s):  
H.-J. Ou

The understanding of the interactions between the small metallic particles and ceramic surfaces has been studied by many catalyst scientists. We had developed Scanning Reflection Electron Microscopy technique to study surface structure of MgO hulk cleaved surface and the interaction with the small particle of metals. Resolutions of 10Å has shown the periodic array of surface atomic steps on MgO. The SREM observation of the interaction between the metallic particles and the surface may provide a new perspective on such processes.


1979 ◽  
Vol 10 (3) ◽  
pp. 145-151 ◽  
Author(s):  
Sallie W. Hillard ◽  
Laura P. Goepfert

This paper describes the concept of teaching articulation through words which have inherent meaning to a child’s life experience, such as a semantically potent word approach. The approach was used with six children. Comparison of pre/post remediation measures indicated that it has promise as a technique for facilitating increased correct phoneme production.


Sign in / Sign up

Export Citation Format

Share Document