scholarly journals Rotating Shaft Fault Prediction Using Convolutional Neural Network: A Preliminary Study

2019 ◽  
Vol 26 (3) ◽  
pp. 75-81
Author(s):  
Davor Kolar ◽  
Dragutin Lisjak ◽  
Michał Pająk

Abstract One of the most important subsystems of the vehicles and machines operating currently in industry and transportation are the rotating subsystems. During the operation, due to the forcing factors influence, the technical state of them is changing and the failure can occur. Fault diagnosis is maintenance task considered as an essential in such subsystems, since possibility of an early detection and diagnosis of the faulty condition can save both time and money. To do this the analysis of the subsystems vibrations is performed. The identified technical state should be considered in a context of the ability and different inability states. Therefore, the first step of the diagnostic procedure is the ability and different inability states identification. Traditional data-driven techniques of fault diagnosis require signal processing for feature extraction, as they are unable to work with raw signal data, consequently leading to need for both expert knowledge and human work. The emergence of deep learning architectures in condition-based maintenance promises to ensure high performance fault diagnosis while lowering necessity for expert knowledge and human work. This article presents authors initial research in deep learning-based data-driven fault diagnosis of rotating subsystems. The proposed technique input raw three-axis accelerometer signal as high-definition image into deep learning layers, which automatically extract signal features, enabling high classification accuracy.

2020 ◽  
Vol 45 (24) ◽  
pp. 13483-13495 ◽  
Author(s):  
Xuexia Zhang ◽  
Jingzhe Zhou ◽  
Weirong Chen

Author(s):  
Huixin Yang ◽  
Xiang Li ◽  
Wei Zhang

Abstract Despite the rapid development of deep learning-based intelligent fault diagnosis methods on rotating machinery, the data-driven approach generally remains a "black box" to researchers, and its internal mechanism has not been sufficiently understood. The weak interpretability significantly impedes further development and applications of the effective deep neural network-based methods. This paper contributes efforts to understanding the mechanical signal processing of deep learning on the fault diagnosis problems. The diagnostic knowledge learned by the deep neural network is visualized using the neuron activation maximization and the saliency map methods. The discriminative features of different machine health conditions are intuitively observed. The relationship between the data-driven methods and the well-established conventional fault diagnosis knowledge is confirmed by the experimental investigations on two datasets. The results of this study can benefit researchers on understanding the complex neural networks, and increase the reliability of the data-driven fault diagnosis model in the real engineering cases.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
David Verstraete ◽  
Andrés Ferrada ◽  
Enrique López Droguett ◽  
Viviana Meruane ◽  
Mohammad Modarres

Traditional feature extraction and selection is a labor-intensive process requiring expert knowledge of the relevant features pertinent to the system. This knowledge is sometimes a luxury and could introduce added uncertainty and bias to the results. To address this problem a deep learning enabled featureless methodology is proposed to automatically learn the features of the data. Time-frequency representations of the raw data are used to generate image representations of the raw signal, which are then fed into a deep convolutional neural network (CNN) architecture for classification and fault diagnosis. This methodology was applied to two public data sets of rolling element bearing vibration signals. Three time-frequency analysis methods (short-time Fourier transform, wavelet transform, and Hilbert-Huang transform) were explored for their representation effectiveness. The proposed CNN architecture achieves better results with less learnable parameters than similar architectures used for fault detection, including cases with experimental noise.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6607
Author(s):  
Ali Behravan ◽  
Bahareh Kiamanesh ◽  
Roman Obermaisser

The state-of-the-art provides data-driven and knowledge-driven diagnostic methods. Each category has its strengths and shortcomings. The knowledge-driven methods rely mainly on expert knowledge and resemble the diagnostic thinking of domain experts with a high capacity in the reasoning of uncertainties, diagnostics of different fault severities, and understandability. However, these methods involve higher and more time-consuming effort; they require a deep understanding of the causal relationships between faults and symptoms; and there is still a lack of automatic approaches to improving the efficiency. The data-driven methods rely on similarities and patterns, and they are very sensitive to changes of patterns and have more accuracy than the knowledge-driven methods, but they require massive data for training, cannot inform about the reason behind the result, and represent black boxes with low understandability. The research problem is thus the combination of knowledge-driven and data-driven diagnosis in DCV and heating systems, to benefit from both categories. The diagnostic method presented in this paper involves less effort for experts without requiring deep understanding of the causal relationships between faults and symptoms compared to existing knowledge-driven methods, while offering high understandability and high accuracy. The fault diagnosis uses a data-driven classifier in combination with knowledge-driven inference with both fuzzy logic and a Bayesian Belief Network (BBN). In offline mode, for each fault class, a Relation-Direction Probability (RDP) table is computed and stored in a fault library. In online mode, we determine the similarities between the actual RDP and the offline precomputed RDPs. The combination of BBN and fuzzy logic in our introduced method analyzes the dependencies of the signals using Mutual Information (MI) theory. The results show the performance of the combined classifier is comparable to the data-driven method while maintaining the strengths of the knowledge-driven methods.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5150
Author(s):  
Shiza Mushtaq ◽  
M. M. Manjurul Islam ◽  
Muhammad Sohaib

This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Alireza Azarfar ◽  
Cees Taal ◽  
Sebastián Echeverri Restrepo ◽  
Menno Liefstingh

In recent years, data-driven techniques such as deep learning (DL), have been widely represented in the literature in the field of bearing vibration condition monitoring. While these approaches achieve excellent performance in detecting bearing faults on controlled laboratory datasets, there is little information available on their applicability to more realistic working conditions. One challenge of these data-driven approaches is that they can learn non-classical features unrelated to the physical defect, making their generalizability debatable. To overcome the challenge of generalizability in DL models, we aim to first understand the underlying representation that the network uses to classify different bearing defects. Having an interpretable DL model may give us hints on how to increase its applicability by, e.g., data augmentation, changing input representations or adapting model architectures. To benefit from advances in interpretability in DL methods from computer vision, we first transform the vibration signal into an image. We evaluate a common input transformation, namely the spectrogram. Subsequently, the representations that the network has learnt are evaluated. We use the Grad-CAM algorithm together with signal modifications to evaluate which parts of the input signal contribute to class attribution. Our results show that the network learns signal features related to the transfer path, the physical properties of the test setup, rather than picking up classical features having a physical relation with the defect. Given that a transfer path is very machine specific, this could be an explanation for the lack of scalability of DL methods. To improve the generalizability of DL methods on bearing vibration analysis, the competing dominant machine specific features should be eliminated from the input representation. These results highlight the importance of combining domain expertise with data-driven approaches.


2021 ◽  
Vol 5 (4) ◽  
pp. 37-53
Author(s):  
Zurana Mehrin Ruhi ◽  
Sigma Jahan ◽  
Jia Uddin

In the fourth industrial revolution, data-driven intelligent fault diagnosis for industrial purposes serves a crucial role. In contemporary times, although deep learning is a popular approach for fault diagnosis, it requires massive amounts of labelled samples for training, which is arduous to come by in the real world. Our contribution to introduce a novel comprehensive intelligent fault detection model using the Case Western Reserve University dataset is divided into two steps. Firstly, a new hybrid signal decomposition methodology is developed comprising Empirical Mode Decomposition and Variational Mode Decomposition to leverage signal information from both processes for effective feature extraction. Secondly, transfer learning with DenseNet121 is employed to alleviate the constraints of deep learning models. Finally, our proposed novel technique surpassed not only previous outcomes but also generated state-of-the-art outcomes represented via the F1 score.


Sign in / Sign up

Export Citation Format

Share Document