Numerical simulation of fuel reactor for a methane-fueled chemical looping combustion using bubbling fluidized bed with internal particle circulation

Author(s):  
Rei-Yu Chein ◽  
Wei-Feng Tseng ◽  
Keng-Tung Wu
Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5394
Author(s):  
Anna Zylka ◽  
Jaroslaw Krzywanski ◽  
Tomasz Czakiert ◽  
Kamil Idziak ◽  
Marcin Sosnowski ◽  
...  

This paper presents a 1.5D model of a fluidized bed chemical looping combustion (CLC) built with the use of a comprehensive simulator of fluidized and moving bed equipment (CeSFaMB) simulator. The model is capable of calculating the effect of gas velocity in the fuel reactor on the hydrodynamics of the fluidized bed and the kinetics of the CLC process. Mass of solids in re actors, solid circulating rates, particle residence time, and the number of particle cycles in the air and fuel reactor are considered within the study. Moreover, the presented model calculates essential emissions such as CO2, SOX, NOX, and O2. The model was successfully validated on experimental tests that were carried out on the Fluidized-Bed Chemical-Looping-Combustion of Solid-Fuels unit located at the Institute of Advanced Energy Technologies, Czestochowa University of Technology, Poland. The model’s validation showed that the maximum relative errors between simulations and experiment results do not exceed 10%. The CeSFaMB model is an optimum compromise among simulation accuracy, computational resources, and processing time.


2020 ◽  
Vol 34 (7) ◽  
pp. 8575-8586
Author(s):  
Hu Chen ◽  
Zhenshan Li ◽  
Xinglei Liu ◽  
Weicheng Li ◽  
Ningsheng Cai ◽  
...  

2012 ◽  
Vol 29 (6) ◽  
pp. 737-742 ◽  
Author(s):  
Jeong-Hoo Choi ◽  
Pil Sang Youn ◽  
Djamila Brahimi ◽  
Young-Wook Jeon ◽  
Sang Done Kim ◽  
...  

Author(s):  
Juan Ada´nez ◽  
Francisco Garci´a-Labiano ◽  
Luis F. de Diego ◽  
Ainhoa Plata ◽  
Javier Celaya ◽  
...  

A mathematical model for a bubbling fluidized bed has been developed to optimize the performance of the fuel reactor in chemical looping combustion systems. This model considers both the hydrodynamic of the fluidized bed (dense bed and freeboard) and the kinetics of the oxygen carrier reduction. Although the model is valid for any of the possible oxygen carriers and fuels, the present work has been focused in the use of a carrier, CuO-SiO2, and CH4 as fuel. The shrinking core model has been used to define the particle behavior during their reduction. The simulation of the fuel reactor under different operating conditions was carried out to set the operating conditions and optimize the process. The effect of different design or operating variables as the bed height, the oxygen carrier/fuel ratio, and the gas throughput was analyzed. Finally, a sensitivity analysis to the solid reactivity, the bubble diameter, and to the gas/solid contact efficiency in the freeboard was done. At vigorous fluidization, solid present in the freeboard can strongly contribute to the gas conversion in the fuel reactor. However, the gas/solid contact efficiency in this zone must be determined for each particular case.


2012 ◽  
Vol 26 (2) ◽  
pp. 1441-1448 ◽  
Author(s):  
Djamila Brahimi ◽  
Jeong-Hoo Choi ◽  
Pil Sang Youn ◽  
Young-Wook Jeon ◽  
Sang Done Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document