Transient Cold Flow Simulation of a Fast Fluidized Bed Fuel Reactor for Chemical Looping Combustion

Author(s):  
Ramesh K. Agarwal ◽  
Mengqiao Yang ◽  
Subhodeep Banerjee
2021 ◽  
Vol 11 (5) ◽  
pp. 2288
Author(s):  
Pulkit Kumar ◽  
Ajit K. Parwani ◽  
Dileep Kumar Gupta ◽  
Vivek Vitankar

Chemical looping combustion (CLC) is the most reliable carbon capture technology for curtailing CO2 insertion into the atmosphere. This paper presents the cold flow simulation results necessary to understand the hydrodynamic viability of the fast-fluidized bed air reactor. Hematite is selected as an oxygen carrier due to its easy availability and active nature during the reactions. The dense discrete phase model (DDPM) approach using the commercial software Ansys Fluent is applied in the simulation. An accurate and stable solution is achieved using the second-order upwind numerical scheme. A pressure difference of 150 kPa is obtained between the outlet and inlet of the selected air reactor, which is necessary for the movement of the particle. The stable circulating rate of hematite is achieved after 28 s of particle injection inside the air reactor. The results have been validated from the experimental results taken from the literature.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5394
Author(s):  
Anna Zylka ◽  
Jaroslaw Krzywanski ◽  
Tomasz Czakiert ◽  
Kamil Idziak ◽  
Marcin Sosnowski ◽  
...  

This paper presents a 1.5D model of a fluidized bed chemical looping combustion (CLC) built with the use of a comprehensive simulator of fluidized and moving bed equipment (CeSFaMB) simulator. The model is capable of calculating the effect of gas velocity in the fuel reactor on the hydrodynamics of the fluidized bed and the kinetics of the CLC process. Mass of solids in re actors, solid circulating rates, particle residence time, and the number of particle cycles in the air and fuel reactor are considered within the study. Moreover, the presented model calculates essential emissions such as CO2, SOX, NOX, and O2. The model was successfully validated on experimental tests that were carried out on the Fluidized-Bed Chemical-Looping-Combustion of Solid-Fuels unit located at the Institute of Advanced Energy Technologies, Czestochowa University of Technology, Poland. The model’s validation showed that the maximum relative errors between simulations and experiment results do not exceed 10%. The CeSFaMB model is an optimum compromise among simulation accuracy, computational resources, and processing time.


2020 ◽  
Vol 34 (7) ◽  
pp. 8575-8586
Author(s):  
Hu Chen ◽  
Zhenshan Li ◽  
Xinglei Liu ◽  
Weicheng Li ◽  
Ningsheng Cai ◽  
...  

Author(s):  
Juan Ada´nez ◽  
Francisco Garci´a-Labiano ◽  
Luis F. de Diego ◽  
Ainhoa Plata ◽  
Javier Celaya ◽  
...  

A mathematical model for a bubbling fluidized bed has been developed to optimize the performance of the fuel reactor in chemical looping combustion systems. This model considers both the hydrodynamic of the fluidized bed (dense bed and freeboard) and the kinetics of the oxygen carrier reduction. Although the model is valid for any of the possible oxygen carriers and fuels, the present work has been focused in the use of a carrier, CuO-SiO2, and CH4 as fuel. The shrinking core model has been used to define the particle behavior during their reduction. The simulation of the fuel reactor under different operating conditions was carried out to set the operating conditions and optimize the process. The effect of different design or operating variables as the bed height, the oxygen carrier/fuel ratio, and the gas throughput was analyzed. Finally, a sensitivity analysis to the solid reactivity, the bubble diameter, and to the gas/solid contact efficiency in the freeboard was done. At vigorous fluidization, solid present in the freeboard can strongly contribute to the gas conversion in the fuel reactor. However, the gas/solid contact efficiency in this zone must be determined for each particular case.


Sign in / Sign up

Export Citation Format

Share Document