Pressure and Temperature Dependent Dynamic Flow and Failure Behavior of PMMA at Intermediate Strain Rates

Author(s):  
Longhui Zhang ◽  
David Townsend ◽  
Nik Petrinic ◽  
Antonio Pellegrino
2021 ◽  
Vol 160 ◽  
pp. 107278
Author(s):  
Erdong Wang ◽  
Guangyong Sun ◽  
Gang Zheng ◽  
Qing Li

2015 ◽  
Vol 18 (2) ◽  
pp. 149-158
Author(s):  
Thien Tich Truong ◽  
Long Thanh Nguyen ◽  
Binh Nguyen Thanh Vu ◽  
Hien Thai Nguyen

Magnesium alloy is one of lightweight alloys has been studied more extensively today. Because weight reduction while maintaining functional requirements is one of the major goals in industries in order to save materials, energy and costs, etc. Its density is about 2/3 of aluminum and 1/4 of steel.The material used in this study is commercial AZ31B magnesium alloy sheet which includes 3% Al and 1% Zn. However, due to HCP (Hexagonal Close Packed) crystal structure, magnesium alloy has limited ductility and poor formability at room temperature. But its ductility and formability will be improved clearly at elevated temperature. From the data of tensile testing, the constitutive equations of AZ31B was approximated using the Ramgberg-Osgood model with temperature dependent parameters to fit in the experiment results in tensile test. Yield locus are also drawn in plane stress σ1- σ2 with different yield criteria such as Hill48, Drucker Prager, Logan Hosford, Y. W. Yoon 2013 and particular Barlat 2000 criteria with temperature dependent parameters. Applying these constitutive equations were determined at various temperatures and different strain rates, the finite element simulation stamping process for AZ31B alloy sheet by software PAM- STAMP 2G 2012, to verify the model materials and the constitutive equations.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Joseph S. Feser ◽  
Ashwani K. Gupta

The effects of adding N2 or CO2 as diluents to a premixed methane–air flames under strain conditions (associated with a stagnation plate) were examined for flame stand-off distance, stability, intensity, and global flame behavior at various equivalence ratios. A stagnation plate was used to simulate the flame behavior near a combustor wall that can help provide some insights into reducing thermal stresses and enhance combustor lifetime. Decrease in equivalence ratio at the same thermal intensity provided larger strain rates while maintaining a stable flame. At stoichiometric condition, a balance was provided between high strain rates and low oxygen concentration flames to mitigate the peak (maximum) flame temperatures, and the associated temperature-dependent pollutants emission, such as NOx, CO, and unburnt hydrocarbons. Higher thermal intensities provided higher strain rates; however, the addition of diluents impacted in destabilization of flame. The flame stand-off behavior occurred at lower strain rates, low thermal intensity, and increased equivalence ratios. CO2 dilution reduced flame intensity, increased flame stand-off distance and overall flame destabilization than that with N2 dilution.


2018 ◽  
Vol 13 ◽  
pp. 1421-1426 ◽  
Author(s):  
Junhe Lian ◽  
Wenqi Liu ◽  
Ioanna Papadioti ◽  
Ilias Bellas ◽  
Sarath Chandran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document