A flexible and high precision calibration method for the structured light vision system

Optik ◽  
2016 ◽  
Vol 127 (1) ◽  
pp. 310-314 ◽  
Author(s):  
Fengkai Ke ◽  
Jingming Xie ◽  
Youping Chen
2014 ◽  
Vol 644-650 ◽  
pp. 1234-1239
Author(s):  
Tao He ◽  
Yu Lang Xie ◽  
Cai Sheng Zhu ◽  
Jiu Yin Chen

This template explains and demonstrates how to design a measurement system based on the size of the linear structured light vision, the system could works at realized the high precision and fast measurement of the size of mechanical parts, and accurate calibration of the system. First of all, this paper set up the experimental platform based on linear structured light vision measurement. Secondly, this paper established a system of measurement model, and puts forward a new method of calibration of structured light sensor and set up the mathematical model of sensor calibration. This calibration method only need to use some gage blocks of high precision as the target, the target position need not have a strict requirements, and the solving process will be more convenient, much easier to field use and maintenance. Finally, measuring accuracy on the system by gage blocks with high precision is verified, the experiment shows that measurement accuracy within 0.050 mmin the depth of 0-80 - mm range. This system can satisfy the demands of precision testing of most industrial parts .with its simple calibration process and high precision, it is suitable for the structured light vision calibration.


2013 ◽  
Vol 397-400 ◽  
pp. 1453-1458 ◽  
Author(s):  
Yu Bao Liu ◽  
Bin Liu ◽  
Jun Yi Lin

It is a difficult task to get enough numbers of highly accurate control points for projector calibration in line structured light vision system. A new projector calibration method based on binocular stereo vision is proposed in this paper. Two cameras calibration can be done usingtraditional camera calibration method and they composed a binocular stereo vision. In projector calibration procedure, a planar template was located at several different positions in front of the stereo vision system. Two cameras captured the stripe images in each position simultaneously. Every center points of the laser stripe can be used as control points of the projector plane. The 3D coordinate of the stripe center points can be obtained through binocular stereo vision principle easily. So the light plane can be calculated quickly. Experiments were carried out and the result shows that the proposed method is flexible and stable.


2009 ◽  
Vol 29 (11) ◽  
pp. 3124-3128 ◽  
Author(s):  
刘震 Liu Zhen ◽  
张广军 Zhang Guangjun ◽  
魏振忠 Wei Zhenzhong ◽  
江洁 Jiang Jie

2019 ◽  
Vol 16 (6) ◽  
pp. 172988141989351
Author(s):  
Xi Zhang ◽  
Yuanzhi Xu ◽  
Haichao Li ◽  
Lijing Zhu ◽  
Xin Wang ◽  
...  

For the purpose of obtaining high-precision in stereo vision calibration, a large-size precise calibration target, which can cover more than half of the field of view is vital. However, large-scale calibration targets are very difficult to fabricate. Based on the idea of error tracing, a high-precision calibration method for vision system with large field of view by constructing a virtual 3-D calibration target with a laser tracker was proposed in this article. A virtual 3-D calibration target that covers the whole measurement space can be established flexibly and the measurement precision of the vision system can be traceable to the laser tracker. First, virtual 3-D targets by calculating rigid body transformation with unit quaternion method were constructed. Then, the high-order distortion camera model was taken into consideration. Besides, the calibration parameters were solved with Levenberg–Marquardt optimization algorithm. In the experiment, a binocular stereo vision system with the field of view of 4 × 3 × 2 m3 was built for verifying the validity and precision of the proposed calibration method. It is measured that the accuracy with the proposed method can be greatly improved comparing with traditional plane calibration method. The method can be widely used in industrial applications, such as in the field of calibrating large-scale vision-based coordinate metrology, and six-degrees of freedom pose tracking system for dimensional measurement of workpiece, as well as robotics geometrical accuracy detection and compensation.


Sensors ◽  
2015 ◽  
Vol 15 (4) ◽  
pp. 8664-8684 ◽  
Author(s):  
Dong Zhan ◽  
Long Yu ◽  
Jian Xiao ◽  
Tanglong Chen

Sign in / Sign up

Export Citation Format

Share Document