Model-driven Automatic Target Recognition of SAR Images with Part-level Reasoning

Optik ◽  
2022 ◽  
pp. 168561
Author(s):  
Baiyuan Ding
2021 ◽  
Vol 13 (8) ◽  
pp. 1455
Author(s):  
Jifang Pei ◽  
Weibo Huo ◽  
Chenwei Wang ◽  
Yulin Huang ◽  
Yin Zhang ◽  
...  

Multiview synthetic aperture radar (SAR) images contain much richer information for automatic target recognition (ATR) than a single-view one. It is desirable to establish a reasonable multiview ATR scheme and design effective ATR algorithm to thoroughly learn and extract that classification information, so that superior SAR ATR performance can be achieved. Hence, a general processing framework applicable for a multiview SAR ATR pattern is first given in this paper, which can provide an effective approach to ATR system design. Then, a new ATR method using a multiview deep feature learning network is designed based on the proposed multiview ATR framework. The proposed neural network is with a multiple input parallel topology and some distinct deep feature learning modules, with which significant classification features, the intra-view and inter-view features existing in the input multiview SAR images, will be learned simultaneously and thoroughly. Therefore, the proposed multiview deep feature learning network can achieve an excellent SAR ATR performance. Experimental results have shown the superiorities of the proposed multiview SAR ATR method under various operating conditions.


2021 ◽  
Vol 13 (4) ◽  
pp. 596
Author(s):  
David Vint ◽  
Matthew Anderson ◽  
Yuhao Yang ◽  
Christos Ilioudis ◽  
Gaetano Di Caterina ◽  
...  

In recent years, the technological advances leading to the production of high-resolution Synthetic Aperture Radar (SAR) images has enabled more and more effective target recognition capabilities. However, high spatial resolution is not always achievable, and, for some particular sensing modes, such as Foliage Penetrating Radars, low resolution imaging is often the only option. In this paper, the problem of automatic target recognition in Low Resolution Foliage Penetrating (FOPEN) SAR is addressed through the use of Convolutional Neural Networks (CNNs) able to extract both low and high level features of the imaged targets. Additionally, to address the issue of limited dataset size, Generative Adversarial Networks are used to enlarge the training set. Finally, a Receiver Operating Characteristic (ROC)-based post-classification decision approach is used to reduce classification errors and measure the capability of the classifier to provide a reliable output. The effectiveness of the proposed framework is demonstrated through the use of real SAR FOPEN data.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hongqiao Wang ◽  
Yanning Cai ◽  
Guangyuan Fu ◽  
Shicheng Wang

Aiming at the multiple target recognition problems in large-scene SAR image with strong speckle, a robust full-process method from target detection, feature extraction to target recognition is studied in this paper. By introducing a simple 8-neighborhood orthogonal basis, a local multiscale decomposition method from the center of gravity of the target is presented. Using this method, an image can be processed with a multilevel sampling filter and the target’s multiscale features in eight directions and one low frequency filtering feature can be derived directly by the key pixels sampling. At the same time, a recognition algorithm organically integrating the local multiscale features and the multiscale wavelet kernel classifier is studied, which realizes the quick classification with robustness and high accuracy for multiclass image targets. The results of classification and adaptability analysis on speckle show that the robust algorithm is effective not only for the MSTAR (Moving and Stationary Target Automatic Recognition) target chips but also for the automatic target recognition of multiclass/multitarget in large-scene SAR image with strong speckle; meanwhile, the method has good robustness to target’s rotation and scale transformation.


2019 ◽  
Vol 11 (8) ◽  
pp. 906 ◽  
Author(s):  
Zongyong Cui ◽  
Cui Tang ◽  
Zongjie Cao ◽  
Nengyuan Liu

Automatic target recognition (ATR) can obtain important information for target surveillance from Synthetic Aperture Radar (SAR) images. Thus, a direct automatic target recognition (D-ATR) method, based on a deep neural network (DNN), is proposed in this paper. To recognize targets in large-scene SAR images, the traditional methods of SAR ATR are comprised of four major steps: detection, discrimination, feature extraction, and classification. However, the recognition performance is sensitive to each step, as the processing result from each step will affect the following step. Meanwhile, these processes are independent, which means that there is still room for processing speed improvement. The proposed D-ATR method can integrate these steps as a whole system and directly recognize targets in large-scene SAR images, by encapsulating all of the computation in a single deep convolutional neural network (DCNN). Before the DCNN, a fast sliding method is proposed to partition the large image into sub-images, to avoid information loss when resizing the input images, and to avoid the target being divided into several parts. After the DCNN, non-maximum suppression between sub-images (NMSS) is performed on the results of the sub-images, to obtain an accurate result of the large-scene SAR image. Experiments on the MSTAR dataset and large-scene SAR images (with resolution 1478 × 1784) show that the proposed method can obtain a high accuracy and fast processing speed, and out-performs other methods, such as CFAR+SVM, Region-based CNN, and YOLOv2.


Sign in / Sign up

Export Citation Format

Share Document