Micropunching large-area metal sheets using underwater shock wave: Experimental study and numerical simulation

Author(s):  
Shigeru Tanaka ◽  
Ivan Bataev ◽  
Masatoshi Nishi ◽  
Igor Balagansky ◽  
Kazuyuki Hokamoto
2007 ◽  
Vol 566 ◽  
pp. 309-314
Author(s):  
Kazumasa Shiramoto ◽  
Masahiro Fujita ◽  
Yasuhiro Ujimoto ◽  
Hirofumi Iyama ◽  
Shigeru Itoh

The paper describes a numerically simulated result for the explosive welding using reflected underwater shock wave. Through the numerical simulation, the effective use of reflected underwater shock wave was clearly suggested and the method to improve the assembly was demonstrated.


2018 ◽  
Vol 910 ◽  
pp. 72-77
Author(s):  
Ryo Henzan ◽  
Yoshikazu Higa ◽  
Osamu Higa ◽  
Ken Shimojima ◽  
Shigeru Itoh

The underwater shock-wave phenomenon has been applied in various fields such as manufacturing and food processing and was investigated using many experimental and numerical analyses in the past. An underwater shock-wave is produced by various methods, e.g., underwater wire explosion and pulse-gap electrical discharge. Therefore, clarifying the shock characteristics depending on the stored electrical energy, wire dimension and material is extremely important. However, predicting the pressure and its distribution induced by underwater electrical wire explosion is hard because the phenomena associated with an elementary process are significantly complicated. In this study, to predict the discharge characteristics induced by underwater electrical wire explosion, numerical simulation based on the “simplified model of underwater electrical discharge” was performed. The numerical results show good agreement with the experimental ones.


2012 ◽  
Vol 706-709 ◽  
pp. 763-767 ◽  
Author(s):  
Akihisa Mori ◽  
Ayumu Fukushima ◽  
Kazumasa Shiramoto ◽  
Masahiro Fujita

Detonating code, which is a flexible code with an explosive core, is normally used to transmit the ignition of explosives with high detonation velocity 6 km/s. Therefore it is difficult to use detonating code for the explosive welding of common metals toward the detonating direction since the welding velocity exceeds the sound velocity of metals. Hence, an explosive welding method using underwater shock wave generated by the detonation of detonating code was tried. In the present investigation, the details of the experimental setup and results are reported. And the welding conditions are discussed through numerical simulation. From these results it is observed that the above technique is suitable to weld thin metal plates with relatively less explosives.


Author(s):  
Libor Severa

The paper concerns with the experimental and numerical study of the peach (Red Haven) at underwater shock wave loading. The behaviour of the peach skin as well as peach stone can be described in terms of elasticity. Following experiments have been performed: tensile testing of the skin (exocarp) specimens at constant elongation at strain rate 0.01 s−1, compression test of the mesocarp specimens at different strain rates corresponding to quasi – static loading, compression test of the mesocarp spe­ci­mens at the high rates of strain (about 1000 s−1), and compression test of the whole peach stone at strain rate corresponding to quasi – static loading. The model of the peach has been suggested. The model is used for the numerical simulation, which was performed on the software LS DYNA 3D finite element code. Pressure wave propagation in the water has been studied and following quantities evaluated: pressure on the peach surface, displacement, and surface velocity. Two different models (Maxwell and Kelvin) have been used. The results of this simulation show some agreement with results of the observation (undamaged peach skin). The numerical simulation also gives an insight on the details of the loading, which was recently tested as a tool of fruit treatment. It has been shown that undewater shock wave treatment of peaches can lead to their softening.


Author(s):  
Hirofumi Iyama ◽  
Shigeru Itoh

Explosive forming is one of the effective metal forming methods using underwater shock wave generated by the detonation of an explosive. The experiment of eccentric spherical free metal forming by this method was carried out. This free metal forming process does not use require expensive metal die. We used simple metal die with only circular edges and considered the metal plate formed to required shape using this method. It was possible to change the pressure distribution applied on the metal plate by changing the set-up position of the explosive and the shape of the device. We have considered this method to cause lessen cost in the small production by various types of metal forming process. In this paper, we introduce the method of eccentric spherical free metal forming using underwater shock wave and present the experimental results. The numerical simulation on this method by FDM (Finite Difference Method) was carried out. In this paper, those results are discussed.


2005 ◽  
Vol 2005 (0) ◽  
pp. 501-502
Author(s):  
Hidetoshi SAKAMOTO ◽  
Shinjirou KAWABE ◽  
Masahiro HIMENO ◽  
Kazuyuki SATOH ◽  
Shigeru ITOH

2013 ◽  
Vol 767 ◽  
pp. 265-268
Author(s):  
Hironori Maehara ◽  
Seisaku Iwasa ◽  
Toshiaki Watanabe ◽  
Kazuyuki Hokamoto ◽  
Shigeru Itoh

In recent years, a method of food processing using underwater shock wave has been investigated. The underwater shock wave is generated by high voltage and large current gap discharge in water, and it is used for food processing in the present investigation. When the underwater shock wave is loaded on the food, the food cells are momentarily broken. Therefore, the food becomes soft, and possible to squeeze water easily. Also, seasonings can be penetrated inside of the food. The improvement of absorbing seasonings for the shock processed foods mainly on Japanese radish is reported in this paper.


Author(s):  
Hirofumi Iyama ◽  
Masatoshi Nishi ◽  
Yoshikazu Higa ◽  
Ken Shimojima ◽  
Osamu Higa ◽  
...  

The explosive forming is a characteristic forming method. An underwater shock wave is generated by underwater explosion of the explosive. A metal plate is affected high strain rate by the shock loading and is formed along a metal die. Although this method has the advantage of mirroring the shape of the die, a free forming was used in this paper. An expensive metal die is not necessary for this free forming. It is possible that a metal plate is formed with simple supporting parts. However, the forming shape is depend on the shock pressure distribution act on the metal plate. This pressure distribution is able to change by the shape of explosive, a mass of explosive and a shape of pressure vessel. On the other hand, we need the pressure vessel for food processing by the underwater shock wave. Therefore, we propose making the pressure vessel by the explosive forming. One design suggestion of pressure vessel made of stainless steel was considered. However, we cannot decide suitable conditions, the mass of the explosive and the distance between the explosive and the metal plate to make the pressure vessel. In order to decide these conditions, we have tried the numerical simulation of this explosive forming. The basic simulation method was ALE (Arbitrary Laglangian Eulerian) method. Mie-Grümeisen EOS (equation of state), JWL EOS, Johnson-Cook constitutive equation for a material model were applied in the numerical simulation. In this paper, the underwater pressure contours to clear the propagations of the underwater shock wave, forming processes and deformation velocity of the metal plate is shown and it will be discussed about those results.


Sign in / Sign up

Export Citation Format

Share Document