Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications

2015 ◽  
Vol 101-102 ◽  
pp. 280-291 ◽  
Author(s):  
M. Shaat ◽  
A. Abdelkefi
Author(s):  
Miheer Gurjar ◽  
Nader Jalili

This paper presents a mathematical model of a self-sensing microcantilever beam for mass sensing applications. Equations of motion are derived for a microcantilever beam with a tip mass and a piezoelectric patch actuator deposited on the cantilever surface. In the self-sensing mode, the same piezoelectric patch is used for actuation and sensing. Selfinduced voltage signals, which are extracted using a capacitive bridge mechanism, reveal frequency information of the vibrating beam, which in turn, reveals the particle mass. Equations of motion are obtained using the extended Hamilton's principle by considering the microcantilever as a distributed- parameters system. Two methods to estimate the unknown tip mass are presented. The first one is based on an inverse solution to the characteristic equation problem, while the second method uses a constraint-based optimization approach to estimate the tip mass. To improve the self-sensing performance, the need for adaptive estimation of the piezoelectric capacitance is stressed and an online estimation mechanism is presented. Simulations are presented to demonstrate the ability of the model to detect tip mass up to 0.1 femtogram (1 femtogram = 10-15 gm). Further simulation results demonstrate the working of constraint optimization method and adaptive self-sensing mechanism.


2019 ◽  
Vol 286 ◽  
pp. 07002
Author(s):  
M. Mouda ◽  
M. Nabhani ◽  
M. El Khlifi

This paper presents a numerical investigation of lubricating slider bearings with conducting couple stress fluids using externally applied magnetics fields. The modified two-dimensional magnetohydrodynamic couple stress Reynolds-type equation is obtained. This governing equation is resolved numerically by using finite difference scheme, which involves the Gauss–Seidel method to compute the bearing characteristics. Numerical results using different considered values of the couple stress and Hartman number are presented. These results demonstrate that the transverse magnetic field and couple stress effects are significant.


2017 ◽  
Vol 22 (3) ◽  
pp. 759-767 ◽  
Author(s):  
A. Walicka ◽  
P. Jurczak ◽  
J. Falicki

AbstractThe flow of a couple-stress lubricant in a clearance of a curvilinear thrust hydrostatic bearing with impermeable walls is considered. The flow in the bearing clearance is considered with inertia forces. The equations of motion are solved by an averaged inertia method. As a result, the formulae for pressure distributions without and with inertia effects were obtained. Radial thrust bearings and spherical bearings are discussed as numerical examples. It is shown that inertia effects influence the bearing performance considerably.


AIAA Journal ◽  
1964 ◽  
Vol 2 (8) ◽  
pp. 1511-1512 ◽  
Author(s):  
S. H. LAM ◽  
D. C. LEIGH

2007 ◽  
Vol 253 (24) ◽  
pp. 9372-9380 ◽  
Author(s):  
Zhi Yan ◽  
Zhitang Song ◽  
Weili Liu ◽  
Hongxuan Ren ◽  
Ning Gu ◽  
...  

2006 ◽  
Vol 88 (26) ◽  
pp. 263507 ◽  
Author(s):  
Guozhen Yue ◽  
Baojie Yan ◽  
Gautam Ganguly ◽  
Jeffrey Yang ◽  
Subhendu Guha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document