scholarly journals A numerical investigation of the effects of Reynolds number on vortex-induced vibration of the cylinders with different mass ratios and frequency ratios

Author(s):  
Zhuang Kang ◽  
Cheng Zhang ◽  
Rui Chang ◽  
Gang Ma
2015 ◽  
Author(s):  
Don W. Allen ◽  
Li Lee ◽  
Dean Henning ◽  
Stergios Liapis

Most deepwater tubulars experiencing high currents frequently require vortex-induced vibration (VIV) suppression to maintain an acceptable fatigue life. Helical strakes and fairings are the most popular VIV suppression devices in use today. Marine growth can significantly affect the VIV of a bare riser, often within just a few weeks or months after riser installation. Marine growth can have a strong influence on the performance of helical strakes and fairings on deepwater tubulars. This influence affects both suppression effectiveness as well as the drag forces on the helical strakes and fairings. Unfortunately, many VIV analyses and suppression designs fail to account for the effects of marine growth at all, even on a bare riser. This paper utilizes results from both high and low Reynolds number VIV test programs to provide some design considerations for managing marine growth for VIV suppression devices.


Sign in / Sign up

Export Citation Format

Share Document