scholarly journals Representation of small passenger ferry maneuvering motions by practical modular model

Author(s):  
Ardhana Wicaksono ◽  
Naoya Hashimoto ◽  
Tomoyasu Takahashi
2021 ◽  
Vol 11 (9) ◽  
pp. 3757
Author(s):  
Lucian Ștefăniță Grigore ◽  
Ionica Oncioiu ◽  
Iustin Priescu ◽  
Daniela Joița

Today, terrestrial robots are used in a multitude of fields and for performing multiple missions. This paper introduces the novel development of a family of crawling terrestrial robots capable of changing very quickly depending on the missions they have to perform. The principle of novelty is the use of a load-bearing platform consisting of two independent propulsion systems. The operational platform, which handles the actual mission, is attached (plug and play) between the two crawler propulsion systems. The source of inspiration is the fact that there are a multitude of intervention robots in emergency situations, each independent of the other. In addition to these costs, there are also problems with the specialization of a very large number of staff. The present study focused on the realization of a simplified, modular model of the kinematics and dynamics of the crawler robot, so that it can be easily integrated, by adding or removing the calculation modules, into the software used. The designed model was integrated on a company controller, which allowed us to compare the results obtained by simulation with those obtained experimentally. We appreciate that the analyzed Explosive Ordnance Disposal (EOD) robot solution represents a premise for the development of a family of EOD robots that use the same carrier platform and to which a multitude of operational platforms should be attached, depending on the missions to be performed.


2012 ◽  
Vol 516-517 ◽  
pp. 1877-1880
Author(s):  
Zhi Tao Wang ◽  
Shu Ying Li ◽  
Xiao Xia Huang ◽  
Tie Lei Li

Based on modular modeling idea, the modular model of marine generation system was set by the technology of systematic simulation. One set of simulation models of marine gas turbine generation system was generated. Results show that flywheel energy storage device can enhance the stability of power grid and play a better role in making marine gas turbine generation system stable under heavy load fluctuations.


2014 ◽  
Vol 797 ◽  
pp. 117-122 ◽  
Author(s):  
Carolina Bermudo ◽  
F. Martín ◽  
Lorenzo Sevilla

It has been established, in previous studies, the best adaptation and solution for the implementation of the modular model, being the current choice based on the minimization of the p/2k dimensionless relation obtained for each one of the model, analyzed under the same boundary conditions and efforts. Among the different cases covered, this paper shows the study for the optimal choice of the geometric distribution of zones. The Upper Bound Theorem (UBT) by its Triangular Rigid Zones (TRZ) consideration, under modular distribution, is applied to indentation processes. To extend the application of the model, cases of different thicknesses are considered


2012 ◽  
Vol 46 (6) ◽  
pp. 72-84
Author(s):  
Geoffrey W. Gill ◽  
Christoph M. Wahner

AbstractAlthough few maritime endeavors are more prosaic than point-to-point ferry operations, on March 6, 1987, the ro-ro (roll on/roll off) passenger ferry Herald of Free Enterprise capsized 4 min after leaving port, with the loss of at least 188 lives. This paper reviews onboard as well as shoreside human factor issues that contributed to the casualty and discusses how the loss triggered a shift in international maritime safety from reactive response to a “safety culture”-oriented philosophy currently imposed through the International Safety Management Code (“ISM Code”). While full particulars have yet to be disclosed, certain similarities with the January 13, 2012 Costa Concordia casualty suggest the maritime industry is slow to apply lessons expensively learned in lost lives and property.


2021 ◽  
Vol 11 (22) ◽  
pp. 10602
Author(s):  
Tobias Kull ◽  
Bernd Zeilmann ◽  
Gerhard Fischerauer

Economic model predictive control in microgrids combined with dynamic pricing of grid electricity is a promising technique to make the power system more flexible. However, to date, each individual microgrid requires major efforts for the mathematical modelling, the implementation on embedded devices, and the qualification of the control. In this work, a field-suitable generalised linear microgrid model is presented. This scalable model is instantiated on field-typical hardware and in a modular way, so that a class of various microgrids can be easily controlled. This significantly reduces the modelling effort during commissioning, decreases the necessary qualification of commissioning staff, and allows for the easy integration of additional microgrid devices during operation. An exemplary model, derived from an existing production facility microgrid, is instantiated, and the characteristics of the results are analysed.


Sign in / Sign up

Export Citation Format

Share Document