multiple missions
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
pp. 107777
Author(s):  
Zhigeng Fang ◽  
Qin Zhang ◽  
Jiajia Cai ◽  
Sifeng Liu

2021 ◽  
Vol 13 (19) ◽  
pp. 3879
Author(s):  
Yuan Chen ◽  
Xing Wang ◽  
Jianjun Liu ◽  
Xin Ren ◽  
Hai Huang ◽  
...  

Chang’e-5 (CE-5) successfully landed on the young basalts area in the northeastern Oceanus Procellarum on 1 December 2020. Recent studies on the CE-5 landing area have shown that the lack of gas-related volcanic morphology indicates that the volatile elements captured in the interior of the Moon within late-stage magma is relatively low. Typical lunar gas-related volcanic features include dark mantle deposits, volcanic pits, irregular mare patches and so on. Based on orbital images, topography, and spectral data obtained from multiple missions restricted by the morphologic and compositional characteristics of typical volcanic explosive features, this study investigated the morphological characteristics of the volcanic features in detail and found that there are three dark mantle deposits (DMDs) near the source area of Rima Mairan that have unusually low albedo and abnormally high titanium and iron content than those of the surrounding material. Combined with M3 spectral analysis, it is shown that DMDs contain some volcanic glass components, which indicates a gas-rich explosive eruption process. In addition to DMDs, irregular mare patches (IMPs) and a volcanic depression/pit have been recognized in this area, both of which indicate a history of gas-related volcanic eruptions. Based on this study and combined with past studies, we determined the volcanic history in the source area of Rima Mairan, including both effusive and explosive volcanic activities.


2021 ◽  
Vol 11 (9) ◽  
pp. 3757
Author(s):  
Lucian Ștefăniță Grigore ◽  
Ionica Oncioiu ◽  
Iustin Priescu ◽  
Daniela Joița

Today, terrestrial robots are used in a multitude of fields and for performing multiple missions. This paper introduces the novel development of a family of crawling terrestrial robots capable of changing very quickly depending on the missions they have to perform. The principle of novelty is the use of a load-bearing platform consisting of two independent propulsion systems. The operational platform, which handles the actual mission, is attached (plug and play) between the two crawler propulsion systems. The source of inspiration is the fact that there are a multitude of intervention robots in emergency situations, each independent of the other. In addition to these costs, there are also problems with the specialization of a very large number of staff. The present study focused on the realization of a simplified, modular model of the kinematics and dynamics of the crawler robot, so that it can be easily integrated, by adding or removing the calculation modules, into the software used. The designed model was integrated on a company controller, which allowed us to compare the results obtained by simulation with those obtained experimentally. We appreciate that the analyzed Explosive Ordnance Disposal (EOD) robot solution represents a premise for the development of a family of EOD robots that use the same carrier platform and to which a multitude of operational platforms should be attached, depending on the missions to be performed.


2021 ◽  
pp. 1-30
Author(s):  
Daniel Druckman ◽  
Grace Mueller ◽  
Paul F. Diehl

2021 ◽  
Vol 13 (1) ◽  
pp. 125
Author(s):  
Graham D. Quartly ◽  
Ge Chen ◽  
Francesco Nencioli ◽  
Rosemary Morrow ◽  
Nicolas Picot

Analysis of the radar echoes from a spaceborne altimeter gives information on sea surface height, wave height and wind speed, as well as other parameters over land and ice. The first spaceborne radar altimeter was pioneered on Skylab in 1974. Since then, there have been about 20 further missions, with several advances in the sophistication of hardware and complexity of processing with the aim of increased accuracy and precision. Because of that, the importance of regular and precise calibration and validation (“cal/val”) remains undiminished, especially with efforts to merge altimetric records from multiple missions spanning different domains and time periods. This special issue brings together 19 papers, with a focus on the recent missions (Jason-2, Jason-3, Sentinel-3A and HY-2B) as well as detailing the issues for anticipated future missions such as SWOT. This editorial provides a brief guide to the approaches and issues for cal/val of the various different derived parameters, including a synopsis of the papers in this special issue.


2020 ◽  
Vol 4 (2) ◽  
pp. 28-37
Author(s):  
Collin E. LeFrois ◽  
Mingqi Zhou ◽  
David Moraga Amador ◽  
Natasha Sng ◽  
Anna-Lisa Paul ◽  
...  

AbstractSpaceflight has a unique set of abiotic conditions to which plants respond by orchestrating genome-wide alterations to their transcriptome. The methods for preserving plants for RNA analysis are well-established and proven over multiple missions, but, methods for investigating the possible epigenetic mechanisms that may contribute to the transcriptome alteration are not well-developed for the confining limitations of the International Space Station (ISS). Currently, the methods used to isolate genomic DNA and to perform epigenetic analyses are ideal for frozen plants, as opposed to plants stored in RNAlater®—a high salt solution that chemically suspends all cellular activity and is typically used on the ISS. Therefore, we developed a method for extracting high-quality genomic DNA suitable for epigenetic analysis from Arabidopsis thaliana (Arabidopsis) plants that were preserved with the current preservation system aboard the ISS—fixation in RNAlater® using Kennedy Space Center Fixation Tubes (KFTs).


Author(s):  
Christopher R. Lawler ◽  
Forrest L. Ridenhour ◽  
Shaheer A. Khan ◽  
Nicholas M. Rossomando ◽  
Ansel Rothstein-Dowden

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Afshin Beheshti ◽  
Kaushik Chakravarty ◽  
Homer Fogle ◽  
Hossein Fazelinia ◽  
Willian A. da Silveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document