Chitosan–aprotinin coated liposomes for oral peptide delivery: Development, characterisation and in vivo evaluation

2009 ◽  
Vol 370 (1-2) ◽  
pp. 26-32 ◽  
Author(s):  
Martin Werle ◽  
Hirofumi Takeuchi
2021 ◽  
Vol 110 (1) ◽  
pp. 228-238
Author(s):  
Staffan Berg ◽  
Julius Krause ◽  
Anders Björkbom ◽  
Katrin Walter ◽  
Said Harun ◽  
...  

2006 ◽  
Vol 6 (9) ◽  
pp. 2921-2928 ◽  
Author(s):  
C. Prego ◽  
D. Torres ◽  
M. J. Alonso

We have recently reported preliminary data showing the efficacy of chitosan nanocapsules as carriers for oral peptide delivery. In the present work, our aim was to investigate the influence of some chitosan properties, such as the molecular weight and type of salt, on the interaction of these nanocapsules with the Caco-2 cells and also on their in vivo effectiveness. Chitosan nanocapsules were prepared by the solvent displacement technique using high (450 kDa) and medium (160 kDa) molecular weight chitosan glutamate as well as high molecular weight chitosan hydrochloride (270 kDa). The results indicated that the size of the nanocapsules was dependent on the chitosan molecular weight, whereas the zeta potential and the association efficiency of salmon calcitonin were not affected by the chitosan properties. Upon incubation with the Caco-2 cells, chitosan nanocapsules exhibited a dose-dependent cellular viability, which was hardly affected by, either the chitosan molecular weight or, the type of salt. In addition, it was observed that the transepithelial electrical resistance of the Caco-2 monolayer was not significantly modified upon their exposure to chitosan nanocapsules. The results of the in vivo studies, following oral administration to rats, indicated that chitosan nanocapsules were able to reduce significantly the serum calcium levels, and to prolong this reduction for at least 24 hours, irrespective of the type of chitosan salt and molecular weight of chitosan. Consequently, the performance of chitosan nanocapsules as oral carriers for salmon calcitonin was not affected by the characteristics of chitosan.


Gut ◽  
2019 ◽  
Vol 69 (5) ◽  
pp. 911-919 ◽  
Author(s):  
Yining Xu ◽  
Matthias Van Hul ◽  
Francesco Suriano ◽  
Véronique Préat ◽  
Patrice D Cani ◽  
...  

ObjectiveTo fulfil an unmet therapeutic need for treating type 2 diabetes by developing an innovative oral drug delivery nanosystem increasing the production of glucagon-like peptide-1 (GLP-1) and the absorption of peptides into the circulation.DesignWe developed a nanocarrier for the oral delivery of peptides using lipid-based nanocapsules. We encapsulated the GLP-1 analogue exenatide within nanocapsules and investigated in vitro in human L-cells (NCl-H716) and murine L-cells (GLUTag cells) the ability of the nanosystem to trigger GLP-1 secretion. The therapeutic relevance of the nanosystem in vivo was tested in high-fat diet (HFD)-induced diabetic mice following acute (one administration) or chronic treatment (5 weeks) in obese and diabetic mice.ResultsWe demonstrated that this innovative nanosystem triggers GLP-1 secretion in both human and murine cells as well as in vivo in mice. This strategy increases the endogenous secretion of GLP-1 and the oral bioavailability of the GLP-1 analogue exenatide (4% bioavailability with our nanosystem).The nanosystem synergizes its own biological effect with the encapsulated GLP-1 analogue leading to a marked improvement of glucose tolerance and insulin resistance (acute and chronic). The chronic treatment decreased diet-induced obesity, fat mass, hepatic steatosis, together with lower infiltration and recruitment of immune cell populations and inflammation.ConclusionWe developed a novel nanosystem compatible with human use that synergizes its own biological effect with the effects of increasing the bioavailability of a GLP-1 analogue. The effects of the formulation were comparable to the results observed for the marketed subcutaneous formulation. This nanocarrier-based strategy represents a novel promising approach for oral peptide delivery in incretin-based diabetes treatment.


2020 ◽  
Author(s):  
Ana Beloqui ◽  
Francesco Suriano ◽  
Matthias Hul ◽  
Yining Xu ◽  
Véronique Préat ◽  
...  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S598-S598 ◽  
Author(s):  
Laurent Martarello ◽  
Vincent J Cunningham ◽  
Julian C Matthews ◽  
Eugenii Rabiner ◽  
Steen Jakobsen ◽  
...  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S595-S595 ◽  
Author(s):  
Wynne K Schiffer ◽  
Deborah Pareto-Onghena ◽  
HaiTao Wu ◽  
Kuo-Shyan Lin ◽  
Andrew R Gibbs ◽  
...  

Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
J Bauer ◽  
F Dehm ◽  
A Koeberle ◽  
F Pollastro ◽  
G Appendino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document