solvent displacement
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 123 ◽  
pp. 107161
Author(s):  
Noamane Taarji ◽  
Meryem Bouhoute ◽  
Isao Kobayashi ◽  
Kenichi Tominaga ◽  
Hiroko Isoda ◽  
...  

2021 ◽  
Author(s):  
Matteo Sanviti ◽  
Angel Alegria ◽  
Daniel E Martínez-Tong

Electrically conducting nanospheres of poly-(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with tailored size were prepared by a solvent displacement technique. To fabricate the nanostructures, dried PEDOT:PSS was dissolved in ethylene glycol (EG) and the solution was precipitated in deionized water. The proposed fabrication route allowed to obtain a water-based dispersion of PEDOT:PSS nanospheres with good optical properties. To determine the physical properties of the nanospheres, we followed a nanoscale approach, using Atomic Force Microscopy. Our nanoscale mechanical and electrical investigations showed that the nanospheres preserved good physical properties, compared to the commercial product. Moreover, the local studies indicated that the confinement imposed by the spherical shape and the treatment with EG lead to a different arrangement of the PSS and PEDOT phases, responsible for the good electrical conductivity of the nanostructures.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2649
Author(s):  
Dian Burhani ◽  
Athanasia Amanda Septevani ◽  
Ruby Setiawan ◽  
Luthfia Miftahul Djannah ◽  
Muhammad Andrew Putra ◽  
...  

This study aims to explore the use of cellulose nanocrystals (CNC) and cellulose nanofiber (CNF), obtained from unbleached fiber of oil palm empty fruit bunches (EFB), as raw materials in fabricating aerogel, using the facile technique without solvent displacement. The CNC was isolated from sulfuric acid hydrolysis, and the CNF was fibrillated using Ultra Turrax. The CNC and CNF were mixed by ultrasonication in different ratios to produce aerogel using slow freezing (−20 °C), followed by freeze-drying. The obtained aerogel was characterized as ultralightweight and highly porous material, at the density range of 0.0227 to 0.0364 g/cm3 and porosity of 98.027 to 98.667%. Interestingly, the ratio of CNC and CNF significantly affected the characteristics of the obtained aerogel. The mixed aerogel exhibited a higher specific surface area than pure CNC or CNF, with the highest value of 202.72 m2/g for the ratio of 1:3 (CNC/CNF). In addition, the crystallinity degree of obtained aerogel showed a higher value in the range of 76.49 to 69.02%, with the highest value being obtained for higher CNC content. This study is expected to provide insight into nanocellulose-based aerogel, with a promising potential for various applications.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1419
Author(s):  
Edgar Gutiérrez-Fernández ◽  
Jing Cui ◽  
Daniel E. Martínez-Tong ◽  
Aurora Nogales

In this study, water-based functional polymer inks are prepared using different solvent displacement methods, in particular, polymer functional inks based on semiconducting polymer poly(3-hexylthiophene) and the ferroelectric polymer poly(vinylidene fluoride) and its copolymers with trifluoroethylene. The nanoparticles that are included in the inks are prepared by miniemulsion, as well as flash and dialysis nanoprecipitation techniques and we discuss the properties of the inks obtained by each technique. Finally, an example of the functionality of a semiconducting/ferroelectric polymer coating prepared from water-based inks is presented.


2021 ◽  
Vol 294 ◽  
pp. 126346
Author(s):  
Ceren Erust ◽  
Ata Akcil ◽  
Aysenur Tuncuk ◽  
Haci Deveci ◽  
Ersin Yener Yazici ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2226-2234
Author(s):  
Ana María Pineda-Reyes ◽  
Mauricio Hernández Delgado ◽  
María de la Luz Zambrano-Zaragoza ◽  
Gerardo Leyva-Gómez ◽  
Nestor Mendoza-Muñoz ◽  
...  

A novel solvent emulsification-displacement method for obtaining polystyrene nanoparticles is reported. This process has an added value and can be an alternative for the recycling of expanded polystyrene.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1181
Author(s):  
Ana Henriques Mota ◽  
Noélia Duarte ◽  
Ana Teresa Serra ◽  
António Ferreira ◽  
Maria Rosário Bronze ◽  
...  

Sambucus nigra L. is widely used in traditional medicine with different applications. However, confirmative studies are strongly required. This study aimed to assess the biological activities of the S. nigra flower’s extract encapsulated into two different types of nanoparticles for optimizing its properties and producing further evidence of its potential therapeutic uses. Different nanoparticles (poly(lactide-co-glycolide, PLGA) and poly-Ɛ-caprolactone (PCL), both with oleic acid, were prepared by emulsification/solvent diffusion and solvent-displacement methods, respectively. Oleic acid was used as a capping agent. After the nanoparticles’ preparation, they were characterized and the biological activities were studied in terms of collagenase, in vitro and in vivo anti-inflammatory, and in vitro cell viability. Rutin and naringenin were found to be the major phenolic compounds in the studied extract. The encapsulation efficiency was higher than 76% and revealed to have an impact on the release of the extract, mainly for the PLGA. Moreover, biochemical and histopathological analyses confirmed that the extract-loaded PLGA-based nanoparticles displayed the highest anti-inflammatory activity. In addition to supporting the previously reported evidence of potential therapeutic uses of S. nigra, these results could draw the pharmaceutical industry’s interest to the novelty of the nanoproducts.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2670
Author(s):  
Chun Li ◽  
Xiaobo Deng ◽  
Xiaohu Zhou

Organohydrogels with distinct antifreezing and antidehydration properties have aroused great interest among researchers, and various organohydrogels and organohydrogel-based applications have emerged recently. There are two popular synthesis strategies to prepare these antifreezing and antidehydration organohydrogels: the in-situ gelling and the solvent displacement strategies. Although both strategies have been widely applied, there is a lack of comparative study of these two strategies. In this work, to elucidate the comparative advantages of the two synthesis strategies, we studied and compared the mechanical and environmental tolerant properties of the organohydrogels synthesized from both strategies. The glycerol-based and ethylene glycol-based chemical polyacrylamide (PAAm) organohydrogel and the glycerol-based physical gelatin organohydrogel were synthesized and studied. Through the comparative study, we have found that the organohydrogels from different strategies with the same dispersion medium showed similar antifreezing and antidehydration properties but different mechanical properties. The mechanical properties of these organohydrogels are influenced by two opposite factors for each strategy: the enhanced physical interactions induced strengthening and solvent effect or swelling induced weakening. We hope this study may provide a better understanding of the synthesis strategies of organohydrogels and provide a valuable guide to choose the suitable synthesis strategy for each application.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Stefan Schiller ◽  
Andrea Hanefeld ◽  
Marc Schneider ◽  
Claus-Michael Lehr

Abstract To develop a scalable and efficient process suitable for the continuous manufacturing of poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing ovalbumin as the model protein. PLGA nanoparticles were prepared using a double emulsification spray-drying method. Emulsions were prepared using a focused ultrasound transducer equipped with a flow cell. Either poly(vinyl alcohol) (PVA) or poloxamer 407 (P-407) was used as a stabilizer. Aliquots of the emulsions were blended with different matrix excipients and spray dried, and the yield and size of the resuspended nanoparticles was determined and compared against solvent displacement. Nanoparticle sizes of spray-dried PLGA/PVA emulsions were independent of the matrix excipient and comparable with sizes from the solvent displacement method. The yield of the resuspended nanoparticles was highest for emulsions containing trehalose and leucine (79%). Spray drying of PLGA/P-407 emulsions led to agglomerated nanoparticles independent of the matrix excipient. PLGA/P-407 nanoparticles pre-formed by solvent displacement could be spray dried with limited agglomeration when PVA was added as an additional stabilizer. A comparably high and economically interesting nanoparticle yield could be achieved with a process suitable for continuous manufacturing. Further studies are needed to understand the robustness of a continuous process at commercial scale.


Sign in / Sign up

Export Citation Format

Share Document