In vitro drug release mechanism from lipid nanocapsules (LNC)

2010 ◽  
Vol 390 (2) ◽  
pp. 208-213 ◽  
Author(s):  
Mona M.A. Abdel-Mottaleb ◽  
Dirk Neumann ◽  
Alf Lamprecht
Author(s):  
Jasvanth E ◽  
Teja D ◽  
Mounika B ◽  
Buchi N Nalluri

Objective: The present investigation was aimed at preparation and evaluation of mouth dissolving films (MDFs) of Ramipril to enhance patient convenience, compliance and to improve bioavailability. Methods: MDFs with 0.5% w/w Ramipril were prepared by a solvent casting method using a wet film applicator. The effects of film formers, wetting/solubilizing, saliva stimulating agents and film modifiers on the physicomechanical and in vitro Ramipril release from MDFs were evaluated. Results: The MDFs prepared were transparent, smooth and showed no re-crystallization upon storage. MDFs casted with hydroxypropyl methylcellulose (HPMC) E3 as film former and polyethylene glycol (PEG-400) as plasticizer showed superior Ramipril release rates and good physicomechanical properties when compared to MDFs with E5 and E15 as film formers. HPMC E3 MDFs with polyvinyl pyrrolidone K30 (PVP K30) and sodium lauryl sulphate (SLS) gave superior drug release properties than MDFs without PVP K30 and SLS. The HPMC E3 MDFs with citric acid (CA) as saliva stimulating and xylitol as soothing agent gave significantly superior in vitro drug release than the MDFs without CA and xylitol. Release kinetics data reveals diffusion as a drug release mechanism. Conclusion: From the obtained results, it can be concluded that the administration of Ramipril as MDF may provide a quick onset of action with enhanced oral bioavailability and therapeutic efficacy.


Author(s):  
Patel J. K ◽  
Tank H. M

The purpose of this research was to formulate and systematically evaluate etoposide-loaded microparticles. Etoposide microparticles containing poly(hydroxybutyrate-co-hydroxyvalerate) and poly(-caprolactone) were prepared by an emulsion/solvent evaporation process. Microparticles were discrete, spherical and free flowing. The microparticles showed high % of yeild and drug entrapment efficiency. Etoposide-loaded microparticles demonstrated drug sustained releases (up to 200 hours). The drug release mechanism was dependent on the presence of PCL in the microparticles. The release of etoposide caused an increase in the surface area of the microparticles. A Fickian release was determined for the microparticles prepared exclusively with P(HBHV), while non-Fickian release behaviors were found for the P(HBHV)/PCL microparticles.


2005 ◽  
Vol 293 (1-2) ◽  
pp. 241-250 ◽  
Author(s):  
Marilisa G. Lara ◽  
M. Vitória L.B. Bentley ◽  
John H. Collett

Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (12) ◽  
pp. 29-35
Author(s):  
N.G.N Swamy ◽  
◽  
P Shilpa ◽  
Z. Abbas

Chewing gums are mobile drug delivery systems, with a potential for administering drugs either for local action or for systemic absorption via buccal route. Dextromethorphan hydrobromide chewing gum formulations were made employing Pharmagum M as the base with an aim to overcome the firstpass effect, reducing the risk of overdosing, ease of administration and for achieving faster systemic absorption. Dextromethorphan hydrobromide was further transformed into spray dried form and incorporated into Pharmagum M base with the object of solubility enhancement and masking the bitter taste of the drug. The prepared medicated chewing gums were evaluated for various precompression and postcompression parameters. The in vitro drug release profiles were carried out employing Erweka DRT chewing apparatus. It was observed that increasing the chewing gum base concentration resulted in a decreased drug release profile. The drug in the spray dried form revealed improved performance in comparison to the directly contained drug. The drug release data were fitted into various kinetic models. It was observed that the drug release was matrix diffusion controlled and revealed a non-Fickian drug release mechanism. Accelerated stability studies were carried out on select formulations as per ICH guidelines. The formulations were found to be stable in respect to physical parameters and no significant deviations were seen in respect to in vitro drug release characteristics.


Author(s):  
Barkat Khan ◽  
Faheem Haider ◽  
Kifayat Shah ◽  
Bushra Uzair ◽  
Kaijian Hou ◽  
...  

This study was carried out to formulate and evaluate controlled release (CR) matrix tablets of Acyclovir using combination of hydrophilic and hydrophobic polymers. Acyclovir is a guanine derivative and is its half-life is short hence administered five times a day using immediate release tablets. Six formulations (F1-F6) were developed using Ethocel and Carbopol in equal combinations at drug-polymer (D:P) ratio of 10:5, 10:6, 10:7, 10:8, 10:9 and 10:10. Solubility study was performed using six different solvents. The compatibility studies were carried out using FTIR and DSC. According to USP, Quality Control and dimensional tests (hardness, friability, disintegration and thickness) were executed. In-vitro drug release studies of Acyclovir was carried out in dissolution apparatus using using 0.1 N HCl medium at constant temperature of 37 ± 0.5 ºC. In order to analyze the drug release kinetics, five different mathematical models were applied to the release data. The results showed that there was no incompatibility between drug and polymers. Physical QC tests were found within limits of USP. The release was retarded upto 24 hrs and non-fickian in-vitro drug release mechanism was found. A formulation developed using blend of polymers, showed excellent retention and desired release profiles thus providing absolute control for 24 hrs.


2021 ◽  
Vol 11 (4) ◽  

Recently, solid lipid Nano-particles have received much attention by the researchers owing to its biodegradability, biocompatibility and the ability to deliver a wide range of drugs. The aim of the present study was to design Diltiazem solid lipid Nano-particles and to evaluate them. Diltiazem solid lipid Nano-particles were prepared by hot homogenization technique using different lipids (Tristearin, GMS and Comprital), soy lecithin as stabilizers and tween 80, Poloxamer as surfactants. The Nano-particles were evaluated for particle size & PDI, zeta potential, entrapment efficiency and in vitro drug release. The particle size ranged from 49.7 to 523.7 nm. PDI of all formulations were good within the range of 0.189 to 0.427. The zeta potential ranged from -10.5 to -29.6 Mv, Entrapment efficiency of all formulations were observed was in the range of 78.68 to 95.23 %. The cumulative percentage release of Diltiazem from different Diltiazem Nano-particles varied from 53.36 to 88.74% depending upon the drug lipid ratio and the type of lipid used. The average percentage of drug released from different SLNs after 24 hours showed in the following order: F9 (53.35%) < F6 (56.75%) < F4 (61.74%) < F7 (63.8%) < F5(67.77%) < F8(69.04%) < F3(75.31%) < F1(79.36%) <F2 (88.74%) respectively. The release kinetic studies showed that the release was first order diffusion controlled and the n values obtained from the Korsmeyer-Peppa’s model indicated the release mechanism was Quasi-Fickian type (n-value of 0.47). Keywords: Diltiazem, solid lipid Nano-particles, FTIR, in vitro drug release.


2020 ◽  
Vol 57 (3) ◽  
pp. 180-188
Author(s):  
Roxana Iancu ◽  
Stefan Andrei Irimiciuc ◽  
Maricel Agop ◽  
Mihail Frasila ◽  
Maria-Alexandra Paun ◽  
...  

A series of four drug release formulations based on 5-fluorouracil encapsulated into a chitosan-based matrix were prepared by in situ hydrogelation with 3,7-dimethyl-2,6-octadienal. The formulations were investigated from structural and morphological aspects by FTIR spectroscopy, polarized light microscopy and scanning electron microscopy. It was established that 5-fluorouracil was anchored into the matrix as crystals, whose dimension varied as a function of the crosslinking density. The in vitro drug release simulated into a media mimicking the physiological environment revealed a progressive release of the 5-fluorouracil, in close interdependence with the crosslinking density. In the context of Pharmacokinetics behavioral analysis, a new mathematical procedure for describing drug release dynamics in polymer-drug complex system is proposed. Assuming that the dynamics of polymer-drug system�s structural units take place on continuous and nondifferentiable curves (multifractal curves), we show that in a one-dimensional hydrodynamic formalism of multifractal variables the drug release mechanism (Fickian diffusion, non-Fickian diffusion, etc) are given through synchronous dynamics at a differentiable and non-differentiable scale resolutions. Finally, the model is confirmed by the empirical data.


Author(s):  
B Syed Salman ◽  
Mohd Abdul Hannan Baig

Oflaxacin is an ophthalmic and topical anti-bacterial agent used in the management of Allergic conjunctivitis, Trachoma, Blepharitis. The basic idea behind the development of such a system is to maintain a sustained drug release from the dosage form. Oflaxacin is suitable candidate for formulation into sustained dosage form in order to prolong the release of drug. The drug-excipient compatibility studies were carried out by using FTIR technique. Based on the results, excipients were found to be compatible with ofloxacin. In preformulation study, estimation of Ofloxacin was carried out by systronics UV spectrophotometer at λmax 284nm using distilled water, which had a good reproducibility and this method was used in entire study. Formulation was prepared by using ionic gelation method .The response drug content, entrapment efficiency, diffusion, spreadability, In vitro drug release was evaluated Drug content ranging from to 82.6 % to 91.24% entrapment efficiency values are ranged from 91.25% to 94.02% and in -vitro drug release studies are also studied. The In-vitro drug release study of Ofloxacin was carried out by using In-vitro diffusion apparatus.100ml of using tear fluid was taken in a beaker. The solution was stirred with 100rpm by maintaining the temperature of 37˚c ± 5˚c. The drug release data were explored for this type of release mechanism followed. The best fit with the highest determination R2 coefficients was shown by both the models (zero and peppas) followed by Higuchi model which indicate the drug release via diffusion mechanism. However as indicated by the values of R both of the models (zero and peppas) followed by Higuchi model were found to be efficient in describing the release of Ofloxacin.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (07) ◽  
pp. 31-40
Author(s):  
H. Doddayya ◽  
◽  
S.S Patil ◽  
M Suman ◽  
P Kumar ◽  
...  

Lercanidipine hydrochloride, an anti hypertension drug, undergoes extensive first pass metabolism to inactive metabolites leading to very poor oral bioavailability. To overcome this problem, buccal films of Lercanidipine hydrochloride were prepared by solvent casting method, employing HPMC, HPC (alone and in combination with PVP) and PVP K30. The film thickness, weight, folding endurance, mucoadhesive strength and time were dependent on the nature and concentration of polymers used. The optimized film (F12, HPMC 3% and PVP 1.5%) showed: Swelling index (51.26 ± 1.90 %), ex vivo mucoadhesive strength (12.64 ± 0.83 grams) and time (3.6 ± 0.5hrs). In vitro drug release was inversely proportional to the polymeric concentration. Ex- vivo drug release studies carried out using goat buccal membrane was slower (42.90%, 6 hrs) compared to in vitro drug release (74.2%, 8hrs) for the same formulation (F12). The drug release mechanism for the optimized formulation followed zero order kinetics. FT-IR and DSC studies revealed the absence of any interaction between the formulation ingredients. The films remained stable during the accelerated stability conditions.


Sign in / Sign up

Export Citation Format

Share Document