Controlled poly(l-lactide-co-trimethylene carbonate) delivery system of cyclosporine A and rapamycine – the effect of copolymer chain microstructure on drug release rate

2011 ◽  
Vol 414 (1-2) ◽  
pp. 203-209 ◽  
Author(s):  
Katarzyna Jelonek ◽  
Janusz Kasperczyk ◽  
Suming Li ◽  
Piotr Dobrzynski ◽  
Bozena Jarzabek
Pharmaceutics ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 40 ◽  
Author(s):  
Ahmed Khames

Because Eplerenone (EPL) is a Biopharmaceutical Classification System (BCS) class-II drug and is prone to extensive liver degradation, it suffers from poor bioavailability after oral administration. This work aimed to prepare liquisolids loaded with EPL-nanoemulsions (EPL-NEs) that have a higher drug release rate and improved bioavailability by the oral route. Based on solubility studies, mixtures of Triacetin (oil) and Kolliphor EL/PEG 400 surfactant/co-surfactant (Smix) in different ratios were used to prepare EPL-NE systems, which were characterized and optimized for droplet size, zeta potential, polydispersity index (PDI), and drug content. Systems were then loaded onto liquisolid formulations and fully evaluated. A liquisolid formulation with better drug release and tableting properties was selected and compared to EPL-NEs and conventional EPL oral tablets in solid-state characterization studies and bioavailability studies in rabbits. Only five NEs prepared at 1:3, 1:2, and 3:1 Smix met the specified optimization criteria. The drug release rate from liquisolids was significantly increased (90% within 45 minutes). EPL-NE also showed significantly improved drug release but with a sustained pattern for four hours. Liquisolid bioavailability reached 2.1 and 1.2 relative to conventional tablets and EPL-NE. This suggests that the EPL-NE liquisolid is a promising oral delivery system with a higher drug release rate, enhanced absorption, decreased liver degradation, and improved bioavailability.


RSC Advances ◽  
2017 ◽  
Vol 7 (84) ◽  
pp. 53401-53406 ◽  
Author(s):  
Ke Ma ◽  
Yiping Qiu ◽  
Yaqin Fu ◽  
Qing-Qing Ni

Six kinds of nanoscale application are designed in this study. A significant increase of drug release rate can be observed at the gastric site.


RSC Advances ◽  
2015 ◽  
Vol 5 (32) ◽  
pp. 25164-25170 ◽  
Author(s):  
Bo Zhang ◽  
Teng Zhang ◽  
Quanxi Wang ◽  
Tianrui Ren

A controlled release system was prepared, it based on UF modified PCC cells in which TEB are loaded into cells. It can control the drug release rate, depress the initial “burst effect”, and was efficacious in controlling wheat powdery mildew.


Biomaterials ◽  
2001 ◽  
Vol 22 (21) ◽  
pp. 2857-2865 ◽  
Author(s):  
Giacomo Fontana ◽  
Mariano Licciardi ◽  
Silvana Mansueto ◽  
Domenico Schillaci ◽  
Gaetano Giammona

2017 ◽  
Vol 9 (3) ◽  
pp. 55
Author(s):  
Manjunath P. N. ◽  
Satish C. S. ◽  
Vasanti S. ◽  
Preetham A. C. ◽  
Naidu Ras

Objective: The aim of this study was to formulate and evaluate gastro retentive drug delivery system (GRRDS) using an effervescent approach for simvastatin.Methods: Floating tablets were prepared using directly compressible polymers hydroxypropyl methylcellulose (HPMC) K100M, HPMC K4M and carboxymethylcellulose sodium (NaCMC). The prepared tablets were subjected to pre-formulation studies like Compressibility index, Hausner ratio and post compression parameters like buoyancy/floating test and In vitro dissolution study.Results: Drug-excipient compatibility studies performed with the help of FTIR instrument indicated that there were no interactions. The DSC thermogram of the formulations revealed that crystalline form of simvastatin existed in the formulation which was confirmed by X-ray powder diffraction. Dissolution studies indicated that there was a decrease in the drug release with an increase in the polymer viscosity. The tablets prepared with low-viscosity grade HPMC K4M exhibited short Buoyancy Lag Time and floated for a longer duration as compared with formulations containing high viscosity grade HPMC K100M. The ‘n’ value for dissolution studies for all the formulations was found to be in the range of 0.647 to 0.975 indicating non-Fickian or anomalous drug transport. Conclusion: The drug release rate and floating duration of tablets depended on the nature of the polymer and other added excipients. The release rate of the drug can be optimized by using different ratios of polymers and other excipients. The formulation F8 achieved the optimized batch and complied with all the properties of the tablets.


Sign in / Sign up

Export Citation Format

Share Document