scholarly journals FORMULATION AND EVALUATION OF SIMVASTATIN GASTRORETENTIVE DRUG DELIVERY SYSTEM

2017 ◽  
Vol 9 (3) ◽  
pp. 55
Author(s):  
Manjunath P. N. ◽  
Satish C. S. ◽  
Vasanti S. ◽  
Preetham A. C. ◽  
Naidu Ras

Objective: The aim of this study was to formulate and evaluate gastro retentive drug delivery system (GRRDS) using an effervescent approach for simvastatin.Methods: Floating tablets were prepared using directly compressible polymers hydroxypropyl methylcellulose (HPMC) K100M, HPMC K4M and carboxymethylcellulose sodium (NaCMC). The prepared tablets were subjected to pre-formulation studies like Compressibility index, Hausner ratio and post compression parameters like buoyancy/floating test and In vitro dissolution study.Results: Drug-excipient compatibility studies performed with the help of FTIR instrument indicated that there were no interactions. The DSC thermogram of the formulations revealed that crystalline form of simvastatin existed in the formulation which was confirmed by X-ray powder diffraction. Dissolution studies indicated that there was a decrease in the drug release with an increase in the polymer viscosity. The tablets prepared with low-viscosity grade HPMC K4M exhibited short Buoyancy Lag Time and floated for a longer duration as compared with formulations containing high viscosity grade HPMC K100M. The ‘n’ value for dissolution studies for all the formulations was found to be in the range of 0.647 to 0.975 indicating non-Fickian or anomalous drug transport. Conclusion: The drug release rate and floating duration of tablets depended on the nature of the polymer and other added excipients. The release rate of the drug can be optimized by using different ratios of polymers and other excipients. The formulation F8 achieved the optimized batch and complied with all the properties of the tablets.


2019 ◽  
Vol 9 (4-A) ◽  
pp. 396-402
Author(s):  
SAI JAHNAVI ◽  
GS Sharma ◽  
B Rama ◽  
, Jyothirani

In present work Colon targeting drug delivery system was developed for Busulfan an anticancer drug by using combination of delayed systems one is pH dependant and other is time dependant delayed system.  Rapid release core tablet (RRCT) formulations were prepared using Busulfan drug with different disintegrating agents in different concentrations. The pre-compression and post-compression parameters of all formulations were determined and the values were found to be satisfactory. From the In-vitro dissolution studies, F6 formulation with 12% Hydroxy propyl cellulose (HPC) was the best formulation. For optimized RRCT formulation press coat was done by using Xanthum Gum and Ethyl Cellulose (EC) in different ratios. Press coated tablet delays the drug release up to 8 hours based on the nature and concentrations of the polymer. Each press coated tablet was coated using enteric solution made of HPMC phthalate, Myvacet and color dissolved in ethanol. Enteric press coated tablets (EPCT) were delayed drug release up to 2hrs in fed condition due to pH dependant delayed system.  Based on dissolution studies of EPCT formulations, C3OPF formulation was optimized and showed delayed release pattern in a much customized manner. As a result of this study it may be concluded that the colon targeted drug delivery tablets using a combination of two polymers in optimized concentrations can be used to increase the delayed action of drug release to deliver the drug in a delayed manner. Key words: Colon, RRCT, HPC, Xanthum gum and EPCT



Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1279 ◽  
Author(s):  
Yanqin Xu ◽  
Liyue Xiao ◽  
Yating Chang ◽  
Yuan Cao ◽  
Changguo Chen ◽  
...  

In order to achieve a controlled release drug delivery system (DDS) for cancer therapy, a pH and redox dual-responsive mesoporous silica nanoparticles (MSN)-sulfur (S)-S- chitosan (CS) DDS was prepared via an amide reaction of dithiodipropionic acid with amino groups on the surface of MSN and amino groups on the surface of CS. Using salicylic acid (SA) as a model drug, SA@MSN-S-S-CS was prepared by an impregnation method. Subsequently, the stability, swelling properties and drug release properties of the DDS were studied by x-ray diffraction, scanning electron microscopy, Fourier transform infrared microspectroscopy, size and zeta potential as well as Brunauer–Emmett–Teller surface area. Pore size and volume of the composites decreased after drug loading but maintained a stable structure. The calculated drug loading rate and encapsulation efficiency were 8.17% and 55.64%, respectively. The in vitro drug release rate was 21.54% in response to glutathione, and the release rate showed a marked increase as the pH decreased. Overall, double response functions of MSN-S-S-CS had unique advantages in controlled drug delivery, and may be a new clinical application of DDS in cancer therapy.



Author(s):  
Dumpeti Janardhan ◽  
Sreekanth Joginapally ◽  
Bharat V. ◽  
Rama Subramaniyan P.

The purpose of this investigation was to prepare a gastroretentive drug delivery system of Ofloxacin. Ofloxacin is a fluoroquinolone antibacterial which acts by inhibiting the topoisomerase enzyme which is essential in the reproduction of the bacterial DNA. It is highly soluble in acidic media and precipitates in alkaline media thereby losing its solubility. Hence, a gastroretentive system was developed to enhance the bioavailability by retaining it in the acidic environment of the stomach. Different formulations were formulated using various concentrations of hydroxy propyl methyl cellulose, sodium carboxy methyl cellulose, sodium bicarbonate and citric acid. The formulations were evaluated for quality control tests and all the physical parameters evaluated are within the acceptable limits of Indian Pharmacopoeia. All the formulations were subjected to in-vitro dissolution studies and compared with the marketed formulation. The floating lag time was below 15 seconds for all the formulations except F1 and F2. The floating duration was found to be more than 24 hours in all except F1, F2 and F10. Formulations F7 and F8 were used to study the effect of sodium bicarbonate and formulations F9 and F10 for the effect of hardness on the drug release. Drug release kinetics was studied for prepared formulations and optimized formulation F5 was found to follow zero order kinetics with r2 =0.993. The statistical analysis of the parameters of dissolution data obtained before and after storage for 3 months at 25°C/ 60%RH and 40°C/75%RH showed no significant change indicating the two dissolution profiles were similar.



2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hitesh Chavda ◽  
Ishan Modhia ◽  
Anant Mehta ◽  
Rupal Patel ◽  
Chhagan Patel

Bioadhesive superporous hydrogel composite (SPHC) particles were developed for an intestinal delivery of metoprolol succinate and characterized for density, porosity, swelling, morphology, and bioadhesion studies. Chitosan and HPMC were used as bioadhesive and release retardant polymers, respectively. A 32full factorial design was applied to optimize the concentration of chitosan and HPMC. The drug loaded bioadhesive SPHC particles were filled in capsule, and the capsule was coated with cellulose acetate phthalate and evaluated for drug content,in vitrodrug release, and stability studies. To ascertain the drug release kinetics, the drug release profiles were fitted for mathematical models. The prepared system remains bioadhesive up to eight hours in intestine and showed Hixson-Crowell release with anomalous nonfickian type of drug transport. The application of SPHC polymer particles as a biomaterial carrier opens a new insight into bioadhesive drug delivery system and could be a future platform for other molecules for intestinal delivery.



RSC Advances ◽  
2017 ◽  
Vol 7 (84) ◽  
pp. 53401-53406 ◽  
Author(s):  
Ke Ma ◽  
Yiping Qiu ◽  
Yaqin Fu ◽  
Qing-Qing Ni

Six kinds of nanoscale application are designed in this study. A significant increase of drug release rate can be observed at the gastric site.



Author(s):  
SABITRI BINDHANI ◽  
SNEHAMAYEE MOHAPATRA ◽  
RAJAT KUMAR KAR

Objective: The objective of this work was to improve the solubility and dissolution rate of Nifedipine by preparing a solid-self micro emulsifying drug delivery system (Solid-smedds). Methods: Liquid-self-emulsifying drug delivery system formulations were prepared by using linseed oil as oil, tween 80 as a surfactant and PEG 400 as cosurfactant. Components were selected by solubility screening studies and the self-emulsifying region was identified by the pseudo-ternary phase diagram. Thermodynamic stability study was performed for the determination of stable liquid-smedds formulation. These formulations were evaluated for self-emulsification time, drug content analysis, robustness to dilution test, particle size analysis, in vitro diffusion study, and Stability study. Solid self-micro emulsifying formulations were prepared by using aerosil-200 at a different ratio. Lf9S (0.65:1) was selected due to its highest drug entrapment efficiency and a decrease in particle size. It was selected for further studies into DSC, SEM, FTIR, and XRD analysis. Results: DSC and XRD result shows that the drug within the formulation was in the amorphous state. From the SEM study, it was observed that the drug has been uniformly distributed and having a smooth surface. From the in vitro dissolution study, it improved the dissolution rate of nifedipine which was 98.70% of drug release where pure drug release only 6.72%. Conclusion: In conclusion, a solid self-micro emulsifying drug delivery system is improved the solubility and drug release rate but also improved the stability of the formulation.



2018 ◽  
Vol 8 (5) ◽  
pp. 393-399
Author(s):  
Ramdas T. Dolas ◽  
Shalindra Sharma ◽  
Madhuraj Sharma

The purpose of this research was to develop a novel gastroretentive drug delivery system based on wet granulation technique for sustained delivery of active agent. Quick GI transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to decreased efficacy of the administered dose and thus less patient compliance. Gastroretentive floating tablets, which was designed to provide the desired sustained and complete release of drug for prolonged period of time. Gastroretentive floating tablets of lafutidine were prepared by wet granulation technique using different concentrations of Gum Kondagagu, Gum olibanum and Locust bean Gum. The optimized formulation (LF14) exhibited 99.54% drug release in 12 hrs, while the buoyancy lag time was 33 sec. In-vitro drug release kinetics was found to follow both the Zero order and the possible mechanism of lafutidine release from the optimized formulation might be attributed to super case II transport mechanism. The Optimized formulation (LF14) showed no significant change in physical appearance, drug content, floating lag time, in vitro dissolution studies after 75%±5% RH at 40±20C relative humidity for 6 months. Keyword: Wet granulation, Floating lag Time, Gastroretentive, Lafutidine



Author(s):  
Kumari P.V. Kamala ◽  
Mounica V. ◽  
Rao Y. Srinivasa

Pulsatile drug delivery system is one type of drug delivery system, where the delivery device is capable of releasing drugs after a predetermined time-delay (i.e. lag time). This system has a peculiar mechanism of delivering the drug rapidly and completely after a "lag time," i.e., a period of "no drug release." These systems are beneficial for drugs having high first-pass effect drugs administered for diseases that follow chrono pharmacological behavior such as drugs having specific absorption sites in GIT, targeting to colon; and cases where nighttime dosing is required. The objective of the present study was to formulate and evaluate a press coated pulsatile drug delivery system of simvastatin in order to attain a time controlled release to lower the blood cholesterol level by releasing the drug with a distinct predetermined lag time of five hrs. Simvastatin is a water insoluble drug and its absorption is dissolution rate limited. The core formulations were composed of simvastatin and disintegrants like lycoat, SSG, ludiflash in different ratios and was coated with xanthan gum, guar gum, HPMC K4M, HPMC K15M as a release modifier. Press coated tablets were evaluated for hardness, friability, drug content, and in vitro drug release. Result of in vitro dissolution study of the prepared tablet suggested that, the release of drug from press coated tablets match with chrono-biological requirement of disease.



Sign in / Sign up

Export Citation Format

Share Document