The influence of lung surfactant liquid crystalline nanostructures on respiratory drug delivery

2016 ◽  
Vol 514 (2) ◽  
pp. 465-474 ◽  
Author(s):  
Shyamal C. Das ◽  
Peter J. Stewart
2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1482
Author(s):  
Olga Cañadas ◽  
Andrea García-García ◽  
M. Auxiliadora Prieto ◽  
Jesús Pérez-Gil

Polyhydroxyalkanoates (PHA) are polyesters produced intracellularly by many bacterial species as energy storage materials, which are used in biomedical applications, including drug delivery systems, due to their biocompatibility and biodegradability. In this study, we evaluated the potential application of this nanomaterial as a basis of inhaled drug delivery systems. To that end, we assessed the possible interaction between PHA nanoparticles (NPs) and pulmonary surfactant using dynamic light scattering, Langmuir balances, and epifluorescence microscopy. Our results demonstrate that NPs deposited onto preformed monolayers of DPPC or DPPC/POPG bind these surfactant lipids. This interaction facilitated the translocation of the nanomaterial towards the aqueous subphase, with the subsequent loss of lipid from the interface. NPs that remained at the interface associated with liquid expanded (LE)/tilted condensed (TC) phase boundaries, decreasing the size of condensed domains and promoting the intermixing of TC and LE phases at submicroscopic scale. This provided the stability necessary for attaining high surface pressures upon compression, countering the destabilization induced by lipid loss. These effects were observed only for high NP loads, suggesting a limit for the use of these NPs in pulmonary drug delivery.


Author(s):  
Anurag Tiwari ◽  
Siddharth Sharma ◽  
Vivek Kumar Srivastav ◽  
Anuj Jain ◽  
Akshoy Ranjan Paul

Respiratory drug delivery has been under the spotlight of research for the past few decades, mainly due to rapid increase of pulmonary diseases. This type of drug delivery offers the highest efficiency for treatment. Despite its numerous benefits, there are some drawbacks in the method of respiratory drug delivery-the most important being poor delivery efficiency and high drug deposition in undesirable regions, such as the oropharynx. This study is focused on improving pressurized inhaler device, which is one of the most used devices for inhalation therapy throughout the world using the results and findings obtained from numerical analysis. In this study, three atomizer models are investigated and found that pressure swirl atomizer model closely represents the atomization phenomenon from a pressurized inhaler device. Parametric study is carried out using three parameters: nozzle diameter, dispersion angle and sheet constant to optimize the performance of the device. It is revealed that a reduction in nozzle diameter and dispersion angle help in generating fine (smaller diameter) particles, whereas increase in sheet constant is responsible for fine particle production. The values of nozzle diameter, dispersion angle and sheet constant are tuned to get the particles with minimum diameter as output which is desirable for the drug particles to get deposited in the smaller airways of lungs and increase the efficiency of drug delivery and improve the device performance.


2017 ◽  
Vol 508 ◽  
pp. 517-524 ◽  
Author(s):  
Qingtao Liu ◽  
Jinming Hu ◽  
Michael R. Whittaker ◽  
Thomas P. Davis ◽  
Ben J. Boyd

2017 ◽  
Vol 532 (1) ◽  
pp. 345-351 ◽  
Author(s):  
Andrew Otte ◽  
Yahira M. Báez-Santos ◽  
Ellina A. Mun ◽  
Bong-Kwan Soh ◽  
Young-nam Lee ◽  
...  

2019 ◽  
Vol 24 (7) ◽  
pp. 1405-1412 ◽  
Author(s):  
Thiagarajan Madheswaran ◽  
Murugesh Kandasamy ◽  
Rajendran JC Bose ◽  
Vengadeshprabhu Karuppagounder

CHEST Journal ◽  
1997 ◽  
Vol 111 (5) ◽  
pp. 1155-1156 ◽  
Author(s):  
Paula J. Anderson

Sign in / Sign up

Export Citation Format

Share Document