scholarly journals In vitro evaluation of the genotoxicity of poly(anhydride) nanoparticles designed for oral drug delivery

2017 ◽  
Vol 523 (1) ◽  
pp. 418-426 ◽  
Author(s):  
T. Iglesias ◽  
M. Dusinska ◽  
N. El Yamani ◽  
J.M. Irache ◽  
A. Azqueta ◽  
...  
Cellulose ◽  
2017 ◽  
Vol 24 (11) ◽  
pp. 5041-5052 ◽  
Author(s):  
Munair Badshah ◽  
Hanif Ullah ◽  
Shujaat Ali Khan ◽  
Joong Kon Park ◽  
Taous Khan

2007 ◽  
Vol 336 (1) ◽  
pp. 183-190 ◽  
Author(s):  
Mohammad Najlah ◽  
Sally Freeman ◽  
David Attwood ◽  
Antony D’Emanuele

Author(s):  
Leena Jacob ◽  
Abhilash Tv ◽  
Shajan Abraham

Objective: The study was carried out with an objective to achieve a potential sustained release oral drug delivery system of an antihypertensive drug, Perindopril which is a ACE inhibitor having half life of 2 hours. Perindopril is water soluble drug, so we can control or delay the release rate of drug by using release retarding polymers. This may also decrease the toxic side effects by preventing the high initial concentration in the blood.Method: Microcapsules were prepared by solvent evaporation technique using Eudragit L100 and Ethyl cellulose as a retarding agent to control the release rate and magnesium stearate as an inert dispersing carrier to decrease the interfacial tension between lipophilic and hydrophilic phase. Results: Prepared microcapsules were evaluated for the particle size, percentage yield, drug entrapment efficiency, flow property and in vitro drug release for 12 h. Results indicated that the percentage yield, mean particle size, drug entrapment efficiency and the micrometric properties of the microcapsules was influenced by various drug: polymer ratio. The release rate of microcapsules could be controlled as desired by adjusting the combination ratio of dispersing agents to retarding agents.Conclusion:Perindopril microcapsules can be successfully designed to develop sustained drug delivery, that reduces the dosing frequency and their by one can increase the patient compliance.


Author(s):  
Omar Saeb Salih ◽  
Roaa Abdalhameed Nief

ABSTRACTObjective: The objective of this study is to develop a controlled release matrix tablet of candesartan cilexetil to reduce the frequency of administration,enhance bioavailability and improve patient compliance; a once daily sustained release formulation of candesartan cilexetil is desirable.Methods: The prepared tablets from F1 to F24 were evaluated with different evaluation parameters like weight variation, drug content, friability,hardness, thickness and swelling ability. In vitro release for all formulas were studied depends on the type and amount of each polymer, i.e. (16 mg,32 mg and 48 mg) respectively beside to the combination effect of polymers on the release of the drug from the tablet.Results: In vitro release showed that formula 13 had the faster release (100% after 4 h) which contained acacia (1:1) and the lowest sustain releasewas showed for F7 (73% after 8 h) which contained HPMC K100M (1:1). Formula 1 was an 89 % release after 8 h which contain eudragit RS100; F4was a 100 % release after 5 h which contain Na CMC, F10 was a 100% after 8 h which contain xanthan gum and F16 was a 100 % release after 5 hwhich contain tragacanth polymer. Formula 9 had a lower release than F7 and F8 respectively. Formula 7 can be used for sustain oral drug delivery ofcandesartan cilexetil while Formula 13 can be used in contrary as fast release tablets for faster response.Conclusion: Controlled drug delivery system is promising for less dosing and higher patient compliance.Keywords: Angiotensin II receptor antagonist, Hypertension, Matrix system, Control release.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 416 ◽  
Author(s):  
Schneider ◽  
Koziolek ◽  
Weitschies

More than 50 years ago, the first concepts for gastroretentive drug delivery systems were developed. Despite extensive research in this field, there is no single formulation concept for which reliable gastroretention has been demonstrated under different prandial conditions. Thus, gastroretention remains the holy grail of oral drug delivery. One of the major reasons for the various setbacks in this field is the lack of predictive in vitro and in vivo test methods used during preclinical development. In most cases, human gastrointestinal physiology is not properly considered, which leads to the application of inappropriate in vitro and animal models. Moreover, conditions in the stomach are often not fully understood. Important aspects such as the kinetics of fluid volumes, gastric pH or mechanical stresses have to be considered in a realistic manner, otherwise, the gastroretentive potential as well as drug release of novel formulations cannot be assessed correctly in preclinical studies. This review, therefore, highlights the most important aspects of human gastrointestinal physiology and discusses their potential implications for the evaluation of gastroretentive drug delivery systems.


2010 ◽  
Vol 8 (1) ◽  
pp. 225-238 ◽  
Author(s):  
Hong Yuan ◽  
Lin-Juan Lu ◽  
Yong-Zhong Du ◽  
Fu-Qiang Hu

Sign in / Sign up

Export Citation Format

Share Document