Forming limit analysis for two-stage forming of 5182-O aluminum sheet with intermediate annealing

2013 ◽  
Vol 45 ◽  
pp. 21-43 ◽  
Author(s):  
Jingjing Li ◽  
John E. Carsley ◽  
Thomas B. Stoughton ◽  
Louis G. Hector ◽  
S. Jack Hu
2019 ◽  
Vol 794 ◽  
pp. 226-231
Author(s):  
Tomoaki Koga ◽  
Yuichi Tadano

In the plastic deformation of hexagonal metals, deformation twinning plays an important role as well as slip deformation. Therefore, a modelling of deformation twinning is essential in the crystal plasticity modeling. In this study, a model considering the volume fraction of deformation twinning is presented in the framework of crystal plasticity, and it is combined with a finite element-based homogenization scheme to represent the polycrystalline behavior. The presented model is adopted to a sheet necking formulation. Plastic flow behaviors under several strain paths are evaluated using the present framework, and the effect of volume fraction of deformation twinning on the formability of hexagonal metal is discussed.


1987 ◽  
Vol 109 (4) ◽  
pp. 355-361 ◽  
Author(s):  
N. Kawai ◽  
T. Mori ◽  
H. Hayashi ◽  
F. Kondoh

Effects of product shape and a planar-anisotropy on a square shell drawability were studied, using commercially pure aluminum sheet. Two phenomena were mainly considered to affect a forming limit: (a) the prevention of crack initiation at the corner of a punch by adjacent straight punch profile regions, (b) the metal flow in the flange region from the corner to the straight side, the “Strain Relief Effect,” which serves to decrease the deformation at the corner.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Mingshun Yang ◽  
Lang Bai ◽  
Yan Li ◽  
Qilong Yuan

With increasing design complexities of thin-walled parts, the requirement of enhanced formability has impeded the development of the single point incremental forming (SPIF) process. In the present research, the ultrasonic vibration-assisted single point incremental forming (UV-SPIF) method was introduced to increase the formability of sheet metals. AL1060 aluminum alloy was adopted as the experimental material, and a truncated cone part was considered as the research object. The simulation model of UV-SPIF was established to analyze the distribution of plastic strains in the formed part. A forming angle was selected as the measuring index of formability of the aluminum sheet, and the influences of different vibration parameters on formability were evaluated. An experimental platform was devised to verify the accuracy of the obtained simulation results. It was found that ultrasonic vibration effectively improved the forming limit of the sheet. When the amplitude was 6 µm and the frequency was 25 kHz, the sheet yielded the best formability with the largest forming angle of 67 degrees.


2020 ◽  
Vol 47 ◽  
pp. 1270-1273
Author(s):  
Yu Ogasawara ◽  
Tomoyuki Hakoyama ◽  
Toshihiko Kuwabara ◽  
Hiroaki Hayamizu ◽  
Takeshi Ikeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document