Heat transfer characteristics of accumulator heat exchangers under various geometric and operating conditions

2011 ◽  
Vol 34 (4) ◽  
pp. 1077-1084 ◽  
Author(s):  
Hoon Kang ◽  
Ilyong Cho ◽  
Honghee Park ◽  
Yongchan Kim
Author(s):  
Muzafar Hussain ◽  
Shahbaz Tahir

Abstract Nanofluids are widely adopted nowadays to enhance the heat transfer characteristics in the solar applications because of their excellent thermophysical properties. In this paper, a modified Eulerian-Eulerian model recently developed based on experiments was validated numerically to account for the deviations from the experimental data. The modified Eulerian-Eulerian model is compared with the single-phase model, Eulerian-Eulerian models for TiO2-water at different operating conditions and deviation from the experimental data for each of the model was documented. However, the modified Eulerian-Eulerian model gave much closer results when compared to the experimental data. For the further extension of work, the modified Eulerian-Eulerian model was applied to different nanofluids in order to investigate their heat transfer characteristics. Three different nanoparticles were investigated namely Cu, MgO, and Ag and their heat transfer characteristics is calculated based on the modified Eulerian-Eulerian model as well as the single-phase model for the comparison. For lower values of Reynolds numbers, the average heat transfer coefficient was almost identical for both models with small percentage of error but for higher Reynolds numbers, the deviation got larger. Therefore, single-phase model is not appropriate for higher Reynolds numbers and modified Eulerian-Eulerian model should be used to accurately predict the heat transfer characteristics of the nanofluids at higher Reynolds numbers. From the analysis it is found that the Ag-water nanofluid have the highest heat transfer characteristics among others and can be employed in the solar heat exchangers to enhance the heat transfer characteristics and to further improve the efficiency.


2018 ◽  
Vol 40 (12) ◽  
pp. 1007-1022 ◽  
Author(s):  
Kazushi Miyata ◽  
Hideo Mori ◽  
Takahiro Taniguchi ◽  
Shuichi Umezawa ◽  
Katsuhiko Sugita

2013 ◽  
Vol 465-466 ◽  
pp. 500-504 ◽  
Author(s):  
Shahrin Hisham Amirnordin ◽  
Hissein Didane Djamal ◽  
Mohd Norani Mansor ◽  
Amir Khalid ◽  
Md Seri Suzairin ◽  
...  

This paper presents the effect of the changes in fin geometry on pressure drop and heat transfer characteristics of louvered fin heat exchanger numerically. Three dimensional simulation using ANSYS Fluent have been conducted for six different configurations at Reynolds number ranging from 200 to 1000 based on louver pitch. The performance of this system has been evaluated by calculating pressure drop and heat transfer coefficient. The result shows that, the fin pitch and the louver pitch have a very considerable effect on pressure drop as well as heat transfer rate. It is observed that increasing the fin pitch will relatively result in an increase in heat transfer rate but at the same time, the pressure drop will decrease. On the other hand, low pressure drop and low heat transfer rate will be obtained when the louver pitch is increased. Final result shows a good agreement between experimental and numerical results of the louvered fin which is about 12%. This indicates the capability of louvered fin in enhancing the performance of heat exchangers.


1997 ◽  
Vol 119 (2) ◽  
pp. 258-264 ◽  
Author(s):  
J. W. Mohr ◽  
J. Seyed-Yagoobi ◽  
R. H. Page

A Radial Jet Reattachment Combustion (RJRC) nozzle forces primary combustion air to exit radially from the combustion nozzle and to mix with gaseous fuel in a highly turbulent recirculation region generated between the combustion nozzle and impingement surface. High convective heat transfer properties and improved fuel/ air mixing characterize this external mixing combustor for use in impingement flame heating processes. To understand the heat transfer characteristics of this new innovative practical RJRC nozzle, statistical design and analysis of experiments was utilized. A regression model was developed which allowed for determination of the total heat transfer to the impingement surface as well as the NOx emission index over a wide variety of operating conditions. In addition, spatially resolved flame temperatures and impingement surface temperature and heat flux profiles enabled determination of the extent of the combustion process with regards to the impingement surface. Specifically, the relative sizes of the reaction envelope, high temperature reaction zone, and low temperature recirculation zone were all determined. At the impingement surface in the reattachment zone very high local heat flux values were measured. This study provides the first detailed local heat transfer characteristics for the RJRC nozzle.


Sign in / Sign up

Export Citation Format

Share Document