Heat and mass transfer performance comparison of various absorbers/desorbers towards compact and efficient absorption heat pumps

Author(s):  
Chong Zhai ◽  
Wei Wu
2016 ◽  
Vol 24 (02) ◽  
pp. 1630003 ◽  
Author(s):  
Anirban Sur ◽  
Randip K. Das

Researchers proved that, heat powered adsorption refrigeration technology is very effective methods for reutilization of low-grade thermal energy such as industrial waste heat, solar energy, and exhaust gases from engines. But to make it commercially competitive with the well-known vapor compression and absorption refrigeration system, the processes require high rates of heat and mass transfer characteristic between adsorbate and adsorbent as well as externally supplied heat exchanging fluid. This paper reviews various techniques that have been developed and applied to enhance the heat transfer and mass transfer in adsorber beds, and also discuss their effects of the performance on adsorption system. A comprehensive literature review has been conducted and it was concluded that this technology, although attractive, has limitations regarding its heat and mass transfer performance that seem difficult to overcome. Therefore, more researches are required to improve heat and mass transfer performance and sustainability of basic adsorption cycles.


2021 ◽  
pp. 133365
Author(s):  
Marc Scherle ◽  
Timothy A. Nowak ◽  
Stefan Welzel ◽  
Bastian J.M. Etzold ◽  
Ulrich Nieken

2012 ◽  
Vol 134 (10) ◽  
Author(s):  
L. Jiang ◽  
L. W. Wang ◽  
Z. Q. Jin ◽  
B. Tian ◽  
R. Z. Wang

Properties, such as thermal conductivity and permeability, are important for the heat and mass transfer performance in sorption refrigeration. This Technical Brief investigates the thermal conductivity and permeability of eight types of chlorides, which are consolidated with expanded natural graphite (ENG) for the heat transfer intensification.


Author(s):  
Ananda Krishna Nagavarapu ◽  
Srinivas Garimella

This paper presents the development of a miniaturization technology for heat and mass exchangers used in absorption heat pumps. The exchanger consists of an array of parallel, aligned alternating shims with integral microscale features, enclosed between cover plates. These microscale features facilitate the flow of the various fluid streams and the associated heat and mass transfer. In an absorber application, effective vapor and solution contact and microscale features for the flow of both the solution and the coolant induce high heat and mass transfer rates without any active or passive surface enhancement. The geometry ensures even flow distribution with minimal overall pressure drops. A model of the coupled heat and mass transfer process for ammonia-water absorbers using this configuration under typical operating conditions demonstrates the potential for extremely small absorption components. The proposed concept is compact, modular, versatile, and in an eventual implementation, can be mass produced. Additionally, the same concept can be extended to the other absorption heat pump components as well as for several other industries involved in multicomponent fluid processes.


Sign in / Sign up

Export Citation Format

Share Document