Determination of the thermal conductivity of rock from P-wave velocity

2004 ◽  
Vol 41 (4) ◽  
pp. 703-708 ◽  
Author(s):  
H.T. Özkahraman ◽  
R. Selver ◽  
E.C. Işık
2018 ◽  
Vol 19 (2) ◽  
pp. 73
Author(s):  
Febi Niswatul Auliyah ◽  
Komang Ngurah Suarbawa ◽  
Indira Indira

P-wave velocity and S-wave velocity have been investigated in the Bali Province by using earthquake case studies on March 22, 2017. The study was focused on finding out whether there were anomalies in the values of vp/vs before and after the earthquake. Earthquake data was obtained from the Meteorology, Climatology and Geophysics Agency (BMKG) Region III Denpasar, which consisted of the main earthquake on March 22, 2017 and earthquake data in August 2016 to May 2017. Data was processed using the wadati diagram method, obtained that the vp/vs on SRBI, IGBI, DNP and RTBI stations are shifted from 1.5062 to 1.8261. Before the earthquake occurred the anomaly of the value of vp/vs was found on the four stations, at the SRBI station at 10.35%, at the IGBI station at 16.16%, at DNP station at 12.27% and at RTBI station at 4.62%.


2019 ◽  
Vol 219 (2) ◽  
pp. 1377-1394 ◽  
Author(s):  
S Jennings ◽  
D Hasterok ◽  
J Payne

SUMMARY Thermal conductivity is a physical parameter crucial to accurately estimating temperature and modelling thermally related processes within the lithosphere. Direct measurements are often impractical due to the high cost of comprehensive sampling or inaccessibility and thereby require indirect estimates. In this study, we report 340 new thermal conductivity measurements on igneous rocks spanning a wide range of compositions using an optical thermal conductivity scanning device. These are supplemented by a further 122 measurements from the literature. Using major element geochemistry and modal mineralogy, we produce broadly applicable empirical relationships between composition and thermal conductivity. Predictive models for thermal conductivity are developed using (in order of decreasing accuracy) major oxide composition, CIPW normative mineralogy and estimated modal mineralogy. Four common mixing relationships (arithmetic, geometric, square-root and harmonic) are tested and, while results are similar, the geometric model consistently produces the best fit. For our preferred model, $k_{\text{eff}} = \exp ( 1.72 \, C_{\text{SiO}_2} + 1.018 \, C_{\text{MgO}} - 3.652 \, C_{\text{Na}_2\text{O}} - 1.791 \, C_{\text{K}_2\text{O}})$, we find that SiO2 is the primary control on thermal conductivity with an RMS of 0.28 W m−1 K−1or ∼10 per cent. Estimates from normative mineralogy work to a similar degree but require a greater number of parameters, while forward and inverse modelling using estimated modal mineralogy produces less than satisfactory results owing to a number of complications. Using our model, we relate thermal conductivity to both P-wave velocity and density, revealing systematic trends across the compositional range. We determine that thermal conductivity can be calculated from P-wave velocity in the range 6–8 km s−1 to within 0.31 W m−1 K−1 using $k({V_p}) = 0.5822 \, V_p^2 - 8.263 \, V_p + 31.62$. This empirical model can be used to estimate thermal conductivity within the crust where direct sampling is impractical or simply not possible (e.g. at great depths). Our model represents an improved method for estimating lithospheric conductivity than present formulas which exist only for a limited range of compositions or are limited by infrequently measured parameters.


Geothermics ◽  
2015 ◽  
Vol 53 ◽  
pp. 255-269 ◽  
Author(s):  
Lionel Esteban ◽  
Lucas Pimienta ◽  
Joel Sarout ◽  
Claudio Delle Piane ◽  
Sebastien Haffen ◽  
...  

2020 ◽  
Author(s):  
Marc S. Boxberg ◽  
Mandy Duda ◽  
Katrin Löer ◽  
Wolfgang Friederich ◽  
Jörg Renner

<p>Determining elastic wave velocities and intrinsic attenuation of cylindrical rock samples by transmission of ultrasound signals appears to be a simple experimental task, which is performed routinely in a range of geoscientific and engineering applications requiring characterization of rocks in field and laboratory. P- and S-wave velocities are generally determined from first arrivals of signals excited by specifically designed transducers. A couple of methods exist for determining the intrinsic attenuation, most of them relying either on a comparison between the sample under investigation and a standard material or on investigating the same material for various geometries.</p><p>Of the three properties of interest, P-wave velocity is certainly the least challenging one to determine, but dispersion phenomena lead to complications with the consistent identification of frequency-dependent first breaks. The determination of S-wave velocities is even more hampered by converted waves interfering with the S-wave arrival. Attenuation estimates are generally subject to higher uncertainties than velocity measurements due to the high sensitivity of amplitudes to experimental procedures. The achievable accuracy of determining S-wave velocity and intrinsic attenuation using standard procedures thus appears to be limited.</p><p>We pursue the determination of velocity and attenuation of rock samples based on full waveform modeling and inversion. Assuming the rock sample to be homogeneous - an assumption also underlying standard analyses - we quantify P-wave velocity, S-wave velocity and intrinsic P- and S-wave attenuation from matching a single ultrasound trace with a synthetic one numerically modelled using the spectral finite-element software packages SPECFEM2D and SPECFEM3D. We find that enough information on both velocities is contained in the recognizable reflected and converted phases even when nominal P-wave sensors are used. Attenuation characteristics are also inherently contained in the relative amplitudes of these phases due to their different travel paths. We present recommendations for and results from laboratory measurements on cylindrical samples of aluminum and rocks with different geometries that we also compare with various standard analysis methods. The effort put into processing for our approach is particularly justified when accurate values and/or small variations, for example in response to changing P-T-conditions, are of interest or when the amount of sample material is limited.</p>


2020 ◽  
Vol 38 (6) ◽  
pp. 5999-6009
Author(s):  
Vahid Amirkiyaei ◽  
Ebrahim Ghasemi ◽  
Lohrasb Faramarzi

2005 ◽  
Vol 28 (6) ◽  
pp. 12293 ◽  
Author(s):  
L David Suits ◽  
TC Sheahan ◽  
D Fratta ◽  
KA Alshibli ◽  
WM Tanner ◽  
...  

2007 ◽  
Vol 67 (1) ◽  
pp. 11-16 ◽  
Author(s):  
S. Kahraman ◽  
M. Soylemez ◽  
M. Fener
Keyword(s):  
P Wave ◽  

Sign in / Sign up

Export Citation Format

Share Document