Tools for Developing a Quality Management Program: Proactive Tools (Process Mapping, Value Stream Mapping, Fault Tree Analysis, and Failure Mode and Effects Analysis)

2008 ◽  
Vol 71 (1) ◽  
pp. S187-S190 ◽  
Author(s):  
Frank Rath
2021 ◽  
pp. 1451
Author(s):  
Ahmad Ahmad ◽  
Helena JK ◽  
Andrean Yonathan

PT. IE is engaged in the business of making Lighting and Lampposts. Based on observations and interviews, there are still some wastes that arise in the flow of the production process, among which there are still many wastes of waiting time, transportation, movement and inventory. These wastes cause the product completion time to be longer and the resulting quality decreases. To eliminate or reduce waste, it is necessary to apply Lean Manufacturing. Lean Manufacturing is a systematic approach to eliminating waste and changing processes by identifying and reducing waste with continuous improvement and striving to create a production flow along the value stream by eliminating all forms of waste and increasing the added value of products to customers. From the Pareto diagram, it is found that transportation waste has the highest percentage of 26.21%, waiting time is 21.38%, motion waste is 19.31% and waste inventories are 15.17%. while the results of the Value Stream Mapping Current State Map mapping obtained a production lead time of 7,680 seconds and a total cycle time of 6,660 seconds and a PCE Current State Map value of 53.09%. Identify the root causes of waste using Fishbone diagrams, 5 Why Analysis, 5W+1H, Fault Tree Analysis and FMEA. After corrective actions have been taken, based on the Value Stream Mapping Future mapping there is a decrease in production lead time to 5,220 seconds and a decrease in total cycle time to 4,860 seconds and an increase in PCE Future State Map to 68.10% so that there is an increase of 15.01% which shows The company's production process has become more Lean.PT. IE bergerak dalam bisnis pembuatan Lighting dan Tiang Lampu. Berdasarkan observasi dan wawancara, masih terdapat beberapa pemborosan (waste) yang timbul di aliran proses produksi di antaranya masih banyak terjadi pemborosan-pemborosan waktu tunggu, transportasi, gerakan dan inventori. Pemborosan-pemborosan tersebut menyebabkan waktu penyelesaian produk menjadi lebih lama dan kualitas yang dihasilkan menurun. Untuk menghilangkan atau mengurangi pemborosan diperlukan adanya penerapan Lean Manufacturing.Lean Manufacturing merupakan pendekatan sistematik untuk mengeliminasi pemborosan dan mengubah proses dengan cara mengidentifikasi dan mengurangi pemborosan dengan perbaikan kontinu dan berupaya untuk menciptakan aliran produksi sepanjang value stream dengan menghilangkan segala bentuk pemborosan serta meningkatkan nilai tambah produk kepada pelanggan. Dari diagram Pareto ditemukan waste transportasi memiliki persentase paling tinggi sebesar 26,21%, waktu tunggu  21,38%, waste motion 19,31% dan waste inventories 15,17%. sedangkan hasil pemetaan Value Stream Mapping Current State Map diperoleh production lead time selama 7.680 detik dan total cycle time selama 6.660 detik serta nilai PCE Current State Map sebesar 53,09%. Identifikasi akar permasalahan pemborosan menggunakan diagram Fishbone, 5 Why Analysis, 5W+1H, Fault Tree Analysis dan FMEA. Setelah dilakukan tindakan–tindakan perbaikan, berdasarkan pemetaan Value Stream Mapping Future ada penurunan production lead time menjadi 5.220 detik dan penurunan total cycle time menjadi 4.860 detik serta ada peningkatan PCE Future State Map menjadi 68,10% sehingga ada peningkatan 15,01% yang menunjukan proses produksi perusahaan telah menjadi lebih Lean.


2020 ◽  
Vol 2 (1) ◽  
pp. 48
Author(s):  
Sofian Bastuti

PT. Berkah Mirza Insani yang bergerak dibidang pengolahan gas alam menjadi Compressed Natural Gas (CNG) dalam setiap pekerjaan nya selalu mengutamakan Keselamatan dan Kesehatan Kerja (K3) . Penelitian ini mengaplikasikan metode Failure Mode and Effect Analysis (FMEA) didapat RPN tertinggi atau di divisi produksi yang mencakup 8 pekerjaan adalah pada Proses dan langkah pensupplyan CNG ke costumer (operasional PRS) dengan nilai severity 5, occurence 3, detection 4 dan RPN 60. Sedangkan Fault Tree Analysis (FTA) didapat faktor penyebab tingkat risiko tertinggi yaitu Proses dan langkah pensupplyan CNG ke costumer (operasional PRS) saat unloading dan operasional CNG dengan potensi bahaya ledakan Pressure Regulator System (PRS).


2018 ◽  
Vol 218 ◽  
pp. 04006
Author(s):  
Natalia Hartono ◽  
Andry M Panjaitan ◽  
Abram Noel

Nowadays, shoes are not just a casual footwear. Certain shoes can tell the social class of a person. The increase of shoe prices and social status of wearing expensive shoes became a trigger for the development of shoe laundry services. There were a service quality problems in a shoe laundry in Tangerang, Indonesia. Several methods to improve service quality was studied and it is decided to propose a new model, which is integration model of Service Blueprint, Failure Mode and Effect Analysis (FMEA) and Fault Tree Analysis (FTA). The research starts with identifying the problem with observation and interview, then build Service Blueprint. Based on the fail point that has been identified in Service Blueprint, the FMEA used to find which process is the most dominant cause of failure and the most urgent for improvement. The next step is using FTA to find the root cause of the failure of the dominant cause. After analyzing the FTA, the improvement was proposed and implemented. Service failure before and after implementation was compared to see the improvements. There are 6 suggestion and implemented. After the implementation, the error in each process was measured and it is found a decrease in error in each process.


Author(s):  
Andreas Kortenhaus ◽  
Hocine Oumeraci ◽  
Roland Weissmann ◽  
Werner Richwien

2015 ◽  
Vol 42 (5) ◽  
pp. 2449-2461 ◽  
Author(s):  
Ryan P. Manger ◽  
Adam B. Paxton ◽  
Todd Pawlicki ◽  
Gwe-Ya Kim

Author(s):  
Yanuar Alfianto

<p align="center">PT. Garuda Metalindo, which is engaged in the manufacturing industry, is currently experiencing a product failure of 2.5% in the production process and this exceeds the failure tolerance set by the company, which amounts to 10 units of 1000 units per process function or about 1% in the production process. Failure tolerance that exceeds the limit so that improvements need to be made to reduce the number of product defects in each production process. This study uses Fault Tree Analysis (FTA) to identify the causes of product defects based on the current production process, the next stage using Failure Mode and Effect Analysis (FMEA) to identify potential failures, modes, potential effects of failure, causes of failure, detection modes, and determine the rating against severity, occurrence, and detection on the risk priority number in the production process. Based on the results of the assessment on the RPN, a cold forming process with a score of 576, surface finishing with a score of 512 was obtained, machining 1 with a score of 441, and machining 2 with a score of 392. Proposed improvements for cold forming defects by monitoring and making checking tools (jigs), defect surface finishing by supervising and making product shelves, machining defects 1 with product inspection and making tools for checking (jig), and replacement of drill bit types, machining defects 2 with lamp and insert replacement and periodic inspection. By applying these proposals it is expected to reduce the level of product disability.</p>


2013 ◽  
Vol 633 ◽  
pp. 312-321 ◽  
Author(s):  
Gradimir Ivanović ◽  
Radivoje Mitrovic ◽  
Dragan Jovanovic

Transport of ground and coal at the surface coal dig in Kostolac, Serbia, is done using transportation belts (3 - 5 kilometres in length) using the systems of BTR (Bagger-Transporter-Remover) and BTM (Bagger-Transporter-Mill). The transporter belt during circular movement is suspended on carry-rollers (during transport of weight) and on support-rollers (without weight). Two or three carry-rollers, or three support-rollers make a garland. Garlands (5 carry and 3 supporting) are built into a section and they enable the movement of belt over them. The number of sections depends on the transportation system length. Reliability of these systems is governed by the reliability of the carry and support rollers. In order to determine the reliability of the BTR and BTM systems, reliability analysis of both carry and support rollers was performed using the method of Fault Tree Analysis (FTA) and Reliability Block Diagrams (RBD). In this paper the assessment of roller reliability is described using the FTA method with failure elements. The reliability function was determined on the basis of the RBD in the case where all of the constructive elements of the rollers are in operation the complex relationship, and when some of the elements are in failure mode the quasi-complex relationship.


Sign in / Sign up

Export Citation Format

Share Document