Duodenal Dose Sparing With Varying Stomach Volume During IG-IMRT Treatment

2013 ◽  
Vol 87 (2) ◽  
pp. S54-S55
Author(s):  
Y. Suh ◽  
C.W. Swanick ◽  
S. Beddar ◽  
C.H. Crane
Keyword(s):  
2014 ◽  
Vol 41 (2) ◽  
pp. 021728 ◽  
Author(s):  
Lulin Yuan ◽  
Q. Jackie Wu ◽  
Fang-Fang Yin ◽  
Yuliang Jiang ◽  
David Yoo ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 500
Author(s):  
Yoshikazu Honda-Okubo ◽  
Jeremy Baldwin ◽  
Nikolai Petrovsky

Global immunization campaigns have resulted in a major decline in the global incidence of polio cases, with wild-type poliovirus remaining endemic in only two countries. Live oral polio vaccine (OPV) played a role in the reduction in polio case numbers; however, the risk of OPV developing into circulating vaccine-derived poliovirus makes it unsuitable for eradication programs. Trivalent inactivated polio virus (TIPV) vaccines which contain formalin-inactivated antigens produced from virulent types 1, 2 and 3 reference polio strains grown in Vero monkey kidney cells have been advocated as a replacement for OPV; however, TIPVs have weak immunogenicity and multiple boosts are required before peak neutralizing titers are reached. This study examined whether the incorporation of the novel polysaccharide adjuvant, Advax-CpG, could boost the immunogenicity of two TIPV vaccines, (i) a commercially available polio vaccine (IPOL®, Sanofi Pasteur) and (ii) a new TIPV formulation developed by Statens Serum Institut (SSI). Mice were immunized intramuscularly based on recommended vaccine dosage schedules and serum antibody titers were followed for 12 months post-immunization. Advax-CpG significantly enhanced the long-term immunogenicity of both TIPV vaccines and had at least a 10-fold antigen dose-sparing effect. An exception was the poor ability of the SSI TIPV to induce serotype type 1 neutralizing antibodies. Immunization with monovalent IPVs suggested that the low type 1 response to TIPV may be due to antigen competition when the type 1 antigen was co-formulated with the type 2 and 3 antigens. This study provides valuable insights into the complexity of the formulation of multivalent polio vaccines and supports the further development of adjuvanted antigen-sparing TIPV vaccines in the fight to eradicate polio.


2021 ◽  
Vol 161 ◽  
pp. S1620
Author(s):  
C. Abraham ◽  
O. Nicholas ◽  
R. Lewis ◽  
A. Selby ◽  
H. Wong ◽  
...  

Author(s):  
K.J. Mehta ◽  
H. Kuo ◽  
R. Yaparpalvi ◽  
S. Mutyala ◽  
D. Blakaj ◽  
...  

Vaccine ◽  
2008 ◽  
Vol 26 (44) ◽  
pp. 5641-5648 ◽  
Author(s):  
Annett Miller ◽  
Rob J. Center ◽  
John Stambas ◽  
Georgia Deliyannis ◽  
Peter C. Doherty ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Gregory John Tanner

Endopeptidases containing supplements may digest gluten and reduce the impact on celiac and gluten-sensitive subjects who inadvertently consume gluten. We investigated the relative rate of disappearance of coeliac relevant epitopes in extracts of nine commercial supplements, using two competitive enzyme-linked immunosorbent assays (ELISAs)—Ridascreen (detects QQPFP, QQQFP, LQPFP, and QLPFP) and Gluten-Tec (detects Glia-α20 and PFRPQQPYPQ). All epitopes are destroyed by cleavage after P and Q amino acids. Rates at pH 3.5 and pH 7.0 were measured. These experiments were designed to measure relative rates of epitope digestion not to mimic in vivo digestion. The supplements were: 1 GluteGuard, 2 GlutenBlock, 3 GliadinX, 4 GlutnGo, 5 GlutenRescue, 6 Eat E-Z Gluten+, 7 Glutenease, 8 Glutezyme, and 9 Gluten Digest. The mean initial rate and half-lives of epitope digestion were deduced and extrapolated to rates at the recommended dose of one supplement in a fasting stomach volume. At pH 7, supplement 1 was the fastest acting of the supplements, with Ridascreen ELISA, more than twice as fast as the next fastest supplements, 5, 6, 7, and 8. Supplements 2, 3, and 4 showed little activity at pH 7.0. Supplement 1 was also the fastest acting at pH 7 with Gluten-Tec ELISA, more than three times the rate for supplements 2 and 3, with supplements 4–9 showing minimal activity. At pH 3.5, supplement 1 acted more than five times as fast as the next fastest supplements, 2 and 3, when measured by Ridascreen, but supplements 2 and 3 were over two times faster than supplement 1 when measured by Gluten-Tec. Supplements 4–9 demonstrated minimal activity at pH 3.5 with either ELISA. Supplement 1 most rapidly digested the key immuno-reactive gluten epitopes identified by the R5 antibody in the Codex-approved competitive Ridascreen ELISA method and associated with the pathology of celiac disease.


Sign in / Sign up

Export Citation Format

Share Document