scholarly journals Relative Rates of Gluten Digestion by Nine Commercial Dietary Digestive Supplements

2021 ◽  
Vol 8 ◽  
Author(s):  
Gregory John Tanner

Endopeptidases containing supplements may digest gluten and reduce the impact on celiac and gluten-sensitive subjects who inadvertently consume gluten. We investigated the relative rate of disappearance of coeliac relevant epitopes in extracts of nine commercial supplements, using two competitive enzyme-linked immunosorbent assays (ELISAs)—Ridascreen (detects QQPFP, QQQFP, LQPFP, and QLPFP) and Gluten-Tec (detects Glia-α20 and PFRPQQPYPQ). All epitopes are destroyed by cleavage after P and Q amino acids. Rates at pH 3.5 and pH 7.0 were measured. These experiments were designed to measure relative rates of epitope digestion not to mimic in vivo digestion. The supplements were: 1 GluteGuard, 2 GlutenBlock, 3 GliadinX, 4 GlutnGo, 5 GlutenRescue, 6 Eat E-Z Gluten+, 7 Glutenease, 8 Glutezyme, and 9 Gluten Digest. The mean initial rate and half-lives of epitope digestion were deduced and extrapolated to rates at the recommended dose of one supplement in a fasting stomach volume. At pH 7, supplement 1 was the fastest acting of the supplements, with Ridascreen ELISA, more than twice as fast as the next fastest supplements, 5, 6, 7, and 8. Supplements 2, 3, and 4 showed little activity at pH 7.0. Supplement 1 was also the fastest acting at pH 7 with Gluten-Tec ELISA, more than three times the rate for supplements 2 and 3, with supplements 4–9 showing minimal activity. At pH 3.5, supplement 1 acted more than five times as fast as the next fastest supplements, 2 and 3, when measured by Ridascreen, but supplements 2 and 3 were over two times faster than supplement 1 when measured by Gluten-Tec. Supplements 4–9 demonstrated minimal activity at pH 3.5 with either ELISA. Supplement 1 most rapidly digested the key immuno-reactive gluten epitopes identified by the R5 antibody in the Codex-approved competitive Ridascreen ELISA method and associated with the pathology of celiac disease.

2019 ◽  
Author(s):  
A. Z. Płochocka ◽  
N. A. Bulgakova ◽  
L. Chumakova

Cytoplasm is densely packed with macromolecules causing cellular crowding, which alters interactions inside cells and differs between biological systems. Here we investigate the impact of crowding on microtubule cytoskeleton organization. Using mathematical modelling, we find that only anisotropic crowding affects the mean microtubule direction, but any crowding reduces the number of microtubules that form bundles. We validate these predictions in vivo using Drosophila follicular epithelium. Since cellular components are transported along microtubules, our results identify cellular crowding as a novel regulator of this transport and cell organization.


2020 ◽  
Vol 21 (7) ◽  
pp. 2353
Author(s):  
Marcel Gischke ◽  
Reiner Ulrich ◽  
Olanrewaju I. Fatola ◽  
David Scheibner ◽  
Ahmed H. Salaheldin ◽  
...  

Highly pathogenic (HP) avian influenza viruses (AIVs) are naturally restricted to H5 and H7 subtypes with a polybasic cleavage site (CS) in hemagglutinin (HA) and any AIV with an intravenous pathogenicity index (IVPI) ≥ 1.2. Although only a few non-H5/H7 viruses fulfill the criteria of HPAIV; it remains unclear why these viruses did not spread in domestic birds. In 2012, a unique H4N2 virus with a polybasic CS 322PEKRRTR/G329 was isolated from quails in California which, however, was avirulent in chickens. This is the only known non-H5/H7 virus with four basic amino acids in the HACS. Here, we investigated the virulence of this virus in chickens after expansion of the polybasic CS by substitution of T327R (322PEKRRRR/G329) or T327K (322PEKRRKR/G329) with or without reassortment with HPAIV H5N1 and H7N7. The impact of single mutations or reassortment on virus fitness in vitro and in vivo was studied. Efficient cell culture replication of T327R/K carrying H4N2 viruses increased by treatment with trypsin, particularly in MDCK cells, and reassortment with HPAIV H5N1. Replication, virus excretion and bird-to-bird transmission of H4N2 was remarkably compromised by the CS mutations, but restored after reassortment with HPAIV H5N1, although not with HPAIV H7N7. Viruses carrying the H4-HA with or without R327 or K327 mutations and the other seven gene segments from HPAIV H5N1 exhibited high virulence and efficient transmission in chickens. Together, increasing the number of basic amino acids in the H4N2 HACS was detrimental for viral fitness particularly in vivo but compensated by reassortment with HPAIV H5N1. This may explain the absence of non-H5/H7 HPAIV in poultry.


Author(s):  
Omar Ibrahim Saadah

Objective: To describe the growth pattern of children with celiac disease (CD) after introduction of a gluten-free diet (GFD). Methods: In this retrospective, children 2–16 years old with biopsy-proven CD in 2015–2018 were included in the study conducted at King Abdulaziz University Hospital, Jeddah, Saudi Arabia. Serial measurements of height-for-age z-score (HAZ) and weight-for-age z-score (WAZ), were recorded at 0, 4, 8, 12, and 16 months. Data on insulin-like growth hormone-1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) obtained at diagnosis and during follow-up were retrieved. Clinical, demographic, and laboratory data were extracted from patients' medical files. Results: The median age for the patients was 8.9 years (range, 2.4–16 years). Males constituted 53.2%. The mean WAZ at diagnosis was -2.8±1.9 and the mean HAZ was -3±0.99. Trend analysis indicated a significant time effect for WAZ (p<0.001) and for HAZ (p<0.001). The mean IGF-1 was 133.4±96.8 ng/ml and the mean IGFBP-3 was 3174±1081 ng/ml. There was significant increase in the secretion of IGF-1 (p=0.01) and IGFBP-3 (p=0.004) during the first 8 months of a GFD. Conclusion: The administration of a GFD for Saudi children with CD normalizes their growth parameters within 16 months of follow-up and improves the endogenous secretion of growth factors. Keywords: Celiac disease, growth, child, Continuous...


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Rhoodie Garrana ◽  
Govindrau Mohangi ◽  
Paulo Malo ◽  
Miguel Nobre

Background. Endotoxin initiates osteoclastic activity resulting in bone loss. Endotoxin leakage through implant abutment connections negatively influences peri-implant bone levels.Objectives. (i) To determine if endotoxin can traverse different implant-abutment connection (IAC) designs; (ii) to quantify the amount of endotoxins traversing the IAC; (iii) to compare the in vitro comportments of different IACs.Materials and Methods. Twenty-seven IACs were inoculated withE. coliendotoxin. Six of the twenty-seven IACs were external connections from one system (Southern Implants) and the remaining twenty-one IACs were made up of seven internal IAC types from four different implant companies (Straumann, Ankylos, and Neodent, Southern Implants).Results. Of the 27 IACs tested, all 6 external IACs leaked measurable amounts of endotoxin. Of the remaining 21 internal IACs, 9 IACs did not show measurable leakage whilst the remaining 12 IACs leaked varying amounts. The mean log endotoxin level was significantly higher for the external compared to internal types (p=0.015).Conclusion. Within the parameters of this study, we can conclude that endotoxin leakage is dependent on the design of the IAC. Straumann Synocta, Straumann Cross-fit, and Ankylos displayed the best performances of all IACs tested with undetectable leakage after 7 days. Each of these IACs incorporated a morse-like component in their design. Speculation still exists over the impact of IAC endotoxin leakage on peri-implant tissues in vivo; hence, further investigations are required to further explore this.


2020 ◽  
Vol 101 (6) ◽  
pp. 587-598
Author(s):  
Sebastian Eiden ◽  
Ronald Dijkman ◽  
Roland Zell ◽  
Jonas Fuchs ◽  
Georg Kochs

Seasonal influenza viruses circulating between 1918 and 2009 harboured two prevalent genetic variations in the NS1 coding region. A glutamic acid (E)-to-lysine (K) exchange at position 196 was reported to diminish the capacity of NS1 to control interferon induction. Furthermore, alterations at position 231 determine a carboxy-terminal extension of seven amino acids from 230 to 237 residues. Sequence analyses of NS1 of the last 90 years suggest that variations at these two positions are functionally linked. To determine the impact of the two positions on viral replication in vivo, we used a mouse-adapted variant of A/Hong Kong/01/68 (maHK68) (H3N2). maHK68 encodes an NS1 of 237 amino acids with lysine at position 196. A panel of recombinant maHK68 viruses was generated encoding NS1 variants that differed at positions 196 and 231. Our analyses showed a clear effect of the K-196-to-E exchange on interferon induction and virus virulence. These effects were further modulated by the loss of the seven-amino-acid extension. We propose that the combination of NS1 E-196 with the short C-terminal variant conferred a fitness advantage that is reflected by increased virulence in vivo. Notably, this particular NS1 constellation was observed for the pandemic 1918 H1N1 virus.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Rene Rodriguez-Gutierrez ◽  
Leonardo G. Mancillas-Adame ◽  
Giselle Rodríguez-Tamez ◽  
Alejandro Diaz Gonzalez-Colmenero ◽  
Ricardo Cesar Solis-Pacheco ◽  
...  

Background. Hypertriglyceridemia and hyperglycemia coexist in 30-60% of patients with diabetes. The impact of hypertriglyceridemia regarding HbA1c assay reliability remains uncertain. Therefore, we conducted a prospectivein vivocontrolled study with the aim of defining the association between triglyceride levels and HbA1c.Methods. A total of 44 patients with an index-hospital admission diagnosis of diabetic ketoacidosis or hypertriglyceridemia-induced pancreatitis, as a model for acute elevation of triglycerides, were recruited. Blood samples were drawn for the measurement of HbA1c, triglycerides, glucose, and hemoglobin at baseline and subsequently 24 and 48 hours after admission. HbA1c analysis was performed with high-performance liquid chromatography Bio-Rad D10 (NGSP approved).Results. All patients completed the study protocol. A difference between mean triglycerides from day 0 (baseline) to day 2 of 1567.2 mg/dL was observed. We found a difference between mean serum HbA1c from days 0 to 2 of 0.09% [1 mmol/mol] (p=0.004). Moreover, a weak correlation between the mean difference of HbA1c and triglycerides from baseline to day 2 was found to be statistically significant (r=0.256,p=0.015). None of these findings, however, are clinically significant.Conclusion. Triglycerides do not impair the interpretation of HbA1c assay. Patients and clinicians can now be confident that hypertriglyceridemia is not an important factor when interpreting HbA1c results.


2008 ◽  
Vol 75 (3) ◽  
pp. 652-661 ◽  
Author(s):  
�yvind M. Jakobsen ◽  
Trygve Brautaset ◽  
Kristin F. Degnes ◽  
Tonje M. B. Heggeset ◽  
Simone Balzer ◽  
...  

ABSTRACT Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar V max values (between 47 and 58 μmol/min/mg protein) and Km values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC50], 0.1 mM) and by l-lysine (IC50, 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC50, 4 mM) and by l-lysine (IC50, 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK.


2008 ◽  
Vol 410 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Rachael A. Dunlop ◽  
Roger T. Dean ◽  
Kenneth J. Rodgers

Oxidized protein deposition and accumulation have been implicated in the aetiology of a wide variety of age-related pathologies. Protein oxidation in vivo commonly results in the in situ modification of amino acid side chains, generating new oxidized amino acid residues in proteins. We have demonstrated previously that certain oxidized amino acids can be (mis)incorporated into cell proteins in vitro via protein synthesis. In the present study, we show that incorporation of o- and m-tyrosine resulted in increased protein catabolism, whereas dopa incorporation generated proteins that were inefficiently degraded by cells. Incorporation of higher levels of L-dopa into proteins resulted in an increase in the activity of lysosomal cathepsins, increased autofluorescence and the generation of high-molecular-mass SDS-stable complexes, indicative of protein aggregation. These effects were due to proteins containing incorporated L-dopa, since they were not seen with the stereoisomer D-dopa, which enters the cell and generates the same reactive species as L-dopa, but cannot be incorporated into proteins. The present study highlights how the nature of the oxidative modification to the protein can determine the efficiency of its removal from the cell by proteolysis. Protection against the generation of dopa and other species that promote resistance to proteolysis might prove to be critical in preventing toxicity from oxidative stress in pathologies associated with protein deposition, such as atherosclerosis, Alzheimer's disease and Parkinson's disease.


Author(s):  
Kendall S. Hunter ◽  
Craig J. Lanning ◽  
Joseph A. Albietz ◽  
Masahiko Oka ◽  
Karen A. Fagan ◽  
...  

Pulmonary vascular input impedance has been increasingly promoted as an important diagnostic for pulmonary arterial hypertension (PAH) [1,2]. The gold-standard clinical diagnostic for the disease, pulmonary vascular resistance (PVR), quantifies only the mean resistance to flow but ignores the impact of vascular stiffness and flow pulsatility, which in PAH can represent up to 40% of the total load presented to the right ventricle. PVR has also been found to be only a moderate predictor of PAH outcomes [3]. The first of these deficiencies is not present in impedance; clinical studies have found the sum of its 1st and 2nd harmonic moduli to have good correlation (r2 = 0.812) with global pulmonary vascular stiffness (PVS) [2], a hemodynamically-measured quantifier of vascular stiffness. Additionally, the 0th harmonic modulus of impedance has excellent correlation to PVR (r2 = 0.974); thus, it also quantifies the resistive load. Moreover, because PVS has recently been found as a valuable determinant of mortality in PAH [4], we believe that impedance, as a combined measure of PVR and PVS, might be an excellent predictor of disease outcomes.


2018 ◽  
Author(s):  
Vishaka Datta ◽  
Sridhar Hannenhalli ◽  
Rahul Siddharthan

AbstractChIP-seq (Chromatin Immunoprecipitation followed by sequencing) is a high-throughput technique to identify genomic regions that are bound in vivo by a particular protein, e.g., a transcription factor (TF). Biological factors, such as chromatin state, indirect and cooperative binding, as well as experimental factors, such as antibody quality, cross-linking, and PCR biases, are known to affect the outcome of ChIP-seq experiments. However, the relative impact of these factors on inferences made from ChIP-seq data is not entirely clear. Here, via a detailed ChIP-seq simulation pipeline, ChIPulate, we assess the impact of various biological and experimental sources of variation on several outcomes of a ChIP-seq experiment, viz., the recoverability of the TF binding motif, accuracy of TF-DNA binding detection, the sensitivity of inferred TF-DNA binding strength, and number of replicates needed to confidently infer binding strength. We find that the TF motif can be recovered despite poor and non-uniform extraction and PCR amplification efficiencies. The recovery of the motif is however affected to a larger extent by the fraction of sites that are either cooperatively or indirectly bound. Importantly, our simulations reveal that the number of ChIP-seq replicates needed to accurately measure in vivo occupancy at high-affinity sites is larger than the recommended community standards. Our results establish statistical limits on the accuracy of inferences of protein-DNA binding from ChIP-seq and suggest that increasing the mean extraction efficiency, rather than amplification efficiency, would better improve sensitivity. The source code and instructions for running ChIPulate can be found at https://github.com/vishakad/chipulate.


Sign in / Sign up

Export Citation Format

Share Document