Determination of the Effect of Patient-Specific Bladder Filling Protocol for Operated Prostate Cancer Patients on Bladder Volume and Doses Using Cone Beam Computed Tomography Dose Calculations

Author(s):  
D. Yalman ◽  
M. Koylu ◽  
Ö. Duran
2009 ◽  
Vol 92 (1) ◽  
pp. 57-61 ◽  
Author(s):  
Shiu-Chen Jeng ◽  
Chiao-Ling Tsai ◽  
Wen-Tung Chan ◽  
Chuan-Jong Tung ◽  
Jian-Kuen Wu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3070
Author(s):  
Sebastian Iwaszenko ◽  
Jakub Munk ◽  
Stefan Baron ◽  
Adam Smoliński

Modern dentistry commonly uses a variety of imaging methods to support diagnosis and treatment. Among them, cone beam computed tomography (CBCT) is particularly useful in presenting head structures, such as the temporomandibular joint (TMJ). The determination of the morphology of the joint is an important part of the diagnosis as well as the monitoring of the treatment results. It can be accomplished by measurement of the TMJ gap width at three selected places, taken at a specific cross-section. This study presents a new approach to these measurements. First, the CBCT images are denoised using curvilinear methods, and the volume of interest is determined. Then, the orientation of the vertical cross-section plane is computed based on segmented axial sections of the TMJ head. Finally, the cross-section plane is used to determine the standardized locations, at which the width of the gap between condyle and fossa is measured. The elaborated method was tested on selected TMJ CBCT scans with satisfactory results. The proposed solution lays the basis for the development of an autonomous method of TMJ index identification.


2021 ◽  
Vol 10 (14) ◽  
pp. e312101422220
Author(s):  
Lucas Eigi Borges Tanaka ◽  
Ademir Franco ◽  
Rafael Ferreira Abib ◽  
Luiz Roberto Coutinho Manhães-Junior ◽  
Sergio Lucio Pereira de Castro Lopes

Anatomical studies found in cone beam computed tomography (CBCT) an optimal resource for the three-dimensional (3D) assessment of the head and neck. When it comes to the maxillary sinuses, CBCT enables a life-size reliable volumetric analysis. This study aimed to assess the age and sex-related changes of the maxillary sinuses using volumetric CBCT analysis. The sample consisted of CBCT scans of 112 male (n = 57) and female (n = 55) individuals (224 maxillary sinuses) distributed in 5 age categories: 20 |— 30, 31 |— 40, 41 |— 50, 51 |— 60 and > 60 years. Image acquisition was accomplished with the i-CAT Next Generation device set with voxel size of 0.25 mm and field of view that included the maxillary sinuses (retrospective sample collection from an existing database). Image segmentation was performed in itk-SNAP (www.itksnap.org) software. The volume (mm3) of the segmented sinuses was quantified and compared pairwise based on side (left and right), sex (male and female) and age (five groups). Differences between left and right sides volume were not statistically significant (p > 0.05). The mean volume of maxillary sinuses in males was 22% higher than females (p = 0.0001). Volumetric differences were not statistically significant between age categories for males and females (p > 0.05). The discriminant power of sinuses’ volume may support customized and patient-specific treatment planning based on sex.


Sign in / Sign up

Export Citation Format

Share Document