PD-1/PD-L1 blockade as first line systematic therapy in locally advanced cutaneous head and neck squamous cell carcinoma

Author(s):  
E. Ho ◽  
K.S. Hu ◽  
C.Z. Liu ◽  
M. DeLacure ◽  
M. Persky ◽  
...  
Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2691 ◽  
Author(s):  
Christian Borel ◽  
Alain C. Jung ◽  
Mickaël Burgy

Head and neck squamous cell carcinoma (HNSCC) in the recurrent or metastatic (R/M) setting is a devastating disease with a poor prognosis. Until recently, the reference first line treatment was the EXTREME protocol, which yields a 10.1 months median survival, and almost no effective treatment are available in second line. Immune checkpoint inhibitors (ICIs) have changed the prognosis of several metastatic solid tumors. Given their inflammatory profile and high mutational burden, HNSCC is a good candidate for ICIs treatments. First, a strong pembrolizumab efficacy signal was shown in the Keynote-012 Phase Ib study. Then, the phase III Checkmate-141 study validated the efficacy of nivolumab in platinum-resistant patients. Finally, the first line conquest is acquired since the final results of the keynote-048 phase III study that demonstrated the superiority of pembrolizumab versus EXTREME in CPS ≥ 1 patients, and with the addition of platinum and 5FU in all patients. However, the first line treatment landscape is not frozen. Two studies (Checkmate-651 and Kestrel) are investigating the efficacy of the combination of antibodies raised against CTLA-4 and PD-(L)1. Results are impatiently awaited. Further progress needs the use of new immunotherapeutic agents such as monalizumab or ICOS agonist rather in combination with an anti-PD(L)1. New associations of ICIs and chemotherapeutic or targeted therapeutic agents are also actively investigated. Finally, ICIs has to be studied in the locally advanced setting where there is a chance of cure. Several trials are testing the potential synergistic combination of ICIs with radiotherapy and platinum or cetuximab, or ICIs used in a neoadjuvant setting.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3038
Author(s):  
Mickaël Burgy ◽  
Aude Jehl ◽  
Ombline Conrad ◽  
Sophie Foppolo ◽  
Véronique Bruban ◽  
...  

The EGFR-targeting antibody cetuximab (CTX) combined with radiotherapy is the only targeted therapy that has been proven effective for the treatment of locally advanced head and neck squamous cell carcinoma (LA-HNSCC). Recurrence arises in 50% of patients with HNSCC in the years following treatment. In clinicopathological practice, it is difficult to assign patients to classes of risk because no reliable biomarkers are available to predict the outcome of HPV-unrelated HNSCC. In the present study, we investigated the role of Caveolin-1 (Cav1) in the sensitivity of HNSCC cell lines to CTX-radiotherapy that might predict HNSCC relapse. Ctrl- and Cav-1-overexpressing HNSCC cell lines were exposed to solvent, CTX, or irradiation, or exposed to CTX before irradiation. Growth, clonogenicity, cell cycle progression, apoptosis, metabolism and signaling pathways were analyzed. Cav1 expression was analyzed in 173 tumor samples and correlated to locoregional recurrence and overall survival. We showed that Cav1-overexpressing cells demonstrate better survival capacities and remain proliferative and motile when exposed to CTX-radiotherapy. Resistance is mediated by the Cav1/EREG/YAP axis. Patients whose tumors overexpressed Cav1 experienced regional recurrence a few years after adjuvant radiotherapy ± chemotherapy. Together, our observations suggest that a high expression of Cav1 might be predictive of locoregional relapse of LA-HNSCC.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 517
Author(s):  
Wenhao Yao ◽  
Xu Qian ◽  
Sebastian Ochsenreither ◽  
Ferrone Soldano ◽  
Albert B. DeLeo ◽  
...  

The poor prognosis of locally advanced and metastatic head and neck squamous cell carcinoma (HNSCC) is primarily mediated by the functional properties of cancer stem cells (CSCs) and resistance to chemoradiotherapy. We investigated whether the aldehyde dehydrogenase (ALDH) inhibitor disulfiram (DSF) can enhance the sensitivity of therapy. Cell viability was assessed by the 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) and apoptosis assays, and the cell cycle and reactive oxygen species (ROS) levels were evaluated by fluorescence-activated cell sorting (FACS). The radio-sensitizing effect was measured by a colony formation assay. The synergistic effects were calculated by combination index (CI) analyses. The DSF and DSF/Cu2+ inhibited the cell proliferation (inhibitory concentration 50 (IC50) of DSF and DSF/Cu2+ were 13.96 μM and 0.24 μM). DSF and cisplatin displayed a synergistic effect (CI values were <1). DSF or DSF/Cu2+ abolished the cisplatin-induced G2/M arrest (from 52.9% to 40.7% and 41.1%), and combining irradiation (IR) with DSF or DSF/Cu2+ reduced the colony formation and attenuated the G2/M arrest (from 53.6% to 40.2% and 41.9%). The combination of cisplatin, DSF or DSF/Cu2+, and IR enhanced the radio-chemo sensitivity by inducing apoptosis (42.04% and 32.21%) and ROS activity (46.3% and 37.4%). DSF and DSF/Cu2+ enhanced the sensitivity of HNSCC to cisplatin and IR. Confirming the initial data from patient-derived tumor xenograft (PDX) supported a strong rationale to repurpose DSF as a radio-chemosensitizer and to assess its therapeutic potential in a clinical setting.


Sign in / Sign up

Export Citation Format

Share Document