A note on Pageau et al. (1994) results for the order of stress singularities in multimaterial junctions

2020 ◽  
Vol 191-192 ◽  
pp. 529-533
Author(s):  
Filipe F. Fornazari ◽  
Daniane F. Vicentini ◽  
Alberto Barroso
Keyword(s):  
Author(s):  
T. T. C. Ting

Anisotropic Elasticity offers for the first time a comprehensive survey of the analysis of anisotropic materials that can have up to twenty-one elastic constants. Focusing on the mathematically elegant and technically powerful Stroh formalism as a means to understanding the subject, the author tackles a broad range of key topics, including antiplane deformations, Green's functions, stress singularities in composite materials, elliptic inclusions, cracks, thermo-elasticity, and piezoelectric materials, among many others. Well written, theoretically rigorous, and practically oriented, the book will be welcomed by students and researchers alike.


Author(s):  
Yanxin Liu ◽  
Victor Birman ◽  
Chanqing Chen ◽  
Stavros Thomopoulos ◽  
Guy M. Genin

The material mismatch at the attachment of tendon to bone is amongst the most severe for any tensile connection in nature. This is related to the large difference between the stiffness of tendon and bone, whose moduli of elasticity vary by two orders of magnitude. Predictably, such an abrupt change in the stiffness realized over a very narrow insertion site results in high local stresses. One of the implications of the stress distribution is a potential for stress singularities at the junction of the insertion to the bone.


1997 ◽  
Vol 64 (3) ◽  
pp. 525-531 ◽  
Author(s):  
Wen-Hwa Chen ◽  
Tain-Fu Huang

By utilizing the general solutions derived for the plies with arbitrary fiber orientations under uniform axial strain (Huang and Chen, 1994), the explicit solutions of the edge-delamination stress singularities for the angle-ply and cross-ply laminates are obtained. The dominant edge-delamination stress singularities for the angle-ply laminates are found to be a real constant, −1/2, and a pair of complex conjugates, −1/2±i/2πln{(b+b2−a2)/a}. For the cross-ply laminates, the significant effect of transverse shear stresses of the laminate is considered and the dominant edge-delamination stress singularities are shown as −1/2 and −1/2±i/2πln{(c2+c22−4c1c3)/2c1}. a, b, cl, c2, and c3 are the corresponding combined complex constants. In addition, two elementary forms of edge-delamination stress singularity, say, r−1/2 and rδr(lnr)n(δr=n−3/2,n=1,2...) exist for both the angle-ply and cross-ply laminates. Excellent correlations between the present results and available solutions show the validity of the approach. The deficiencies of the solutions available in the literature are compensated. New results for other angle-ply and cross-ply laminates are also provided.


2000 ◽  
Vol 122 (4) ◽  
pp. 301-305 ◽  
Author(s):  
A. Q. Xu ◽  
H. F. Nied

Cracking and delamination at the interfaces of different materials in plastic IC packages is a well-known failure mechanism. The investigation of local stress behavior, including characterization of stress singularities, is an important problem in predicting and preventing crack initiation and propagation. In this study, a three-dimensional finite element procedure is used to compute the strength of stress singularities at various three-dimensional corners in a typical Flip-Chip assembled Chip-on-Board (FCOB) package. It is found that the stress singularities at the three-dimensional corners are always more severe than those at the corresponding two-dimensional edges, which suggests that they are more likely to be the potential delamination sites. Furthermore, it is demonstrated that the stress singularity at the upper silicon die/epoxy fillet edge can be completely eliminated by an appropriate choice in geometry. A weak stress singularity at the FR4 board/epoxy edge is shown to exist, with a stronger singularity located at the internal die/epoxy corner. The influence of the epoxy contact angle and the FR4 glass fiber orientation on stress state is also investigated. A general result is that the strength of the stress singularity increases with increased epoxy contact angle. In addition, it is shown that the stress singularity effect can be minimized by choosing an appropriate orientation between the glass fiber in the FR4 board and the silicon die. Based on these results, several guidelines for minimizing edge stresses in IC packages are presented. [S1043-7398(00)00904-X]


Sign in / Sign up

Export Citation Format

Share Document