Elastic Stress Singularities: Implications for the Attachment of Tendon to Bone

Author(s):  
Yanxin Liu ◽  
Victor Birman ◽  
Chanqing Chen ◽  
Stavros Thomopoulos ◽  
Guy M. Genin

The material mismatch at the attachment of tendon to bone is amongst the most severe for any tensile connection in nature. This is related to the large difference between the stiffness of tendon and bone, whose moduli of elasticity vary by two orders of magnitude. Predictably, such an abrupt change in the stiffness realized over a very narrow insertion site results in high local stresses. One of the implications of the stress distribution is a potential for stress singularities at the junction of the insertion to the bone.

2007 ◽  
Vol 561-565 ◽  
pp. 2033-2036
Author(s):  
Rui Wen Li ◽  
Ping Dong

Beryllium (Be) is susceptible to introduce stress because it is a brittle metal with a high elastic modular. The compact tension (CT) specimens of beryllium were designed to determinate stress and fracture behaviors. Stress distribution near notch in CT beryllium was measured by the combination of an X-ray stress analysis and a custom-designed load device. The results show that local stresses near notch tip are much higher than those on other area. Thus, stress concentration lead the CT specimens fracture along the notch direction. Residual stresses due to machining are remained. A finite element ( FE ) calculation on the same loaded geometry was made, and the result is agreement with the measured stress distribution near notch.


1972 ◽  
Vol 7 (2) ◽  
pp. 141-145
Author(s):  
H McCallion ◽  
C B Hallam

A method for calculating the elastic-stress distribution in two axi-symmetrical conical bodies caused by frictionless contact between them is described. Finite-difference methods were used to solve the governing differential equations. Equilibrium and compatibility over the contacting surfaces was achieved by using the finite-difference solutions to derive a matrix of influence coefficients. By means of an iterative technique, using this matrix, the portion of each surface in the contact zone and the stresses on it were found. With equilibrium and compatibility achieved, the stresses throughout the body of each component were calculated. A selection of results for one case is given.


1986 ◽  
Vol 53 (3) ◽  
pp. 511-518 ◽  
Author(s):  
G. P. Tandon ◽  
G. J. Weng

A simple, albeit approximate, close-form solution is developed to study the elastic stress and energy distribution in and around spheroidal inclusions and voids at finite concentration. This theory combines Eshelby’s solution of an ellipsoidal inclusion and Mori- Tanaka’s concept of average stress in the matrix. The inclusions are taken to be homogeneously dispersed and undirectionally aligned. The analytical results are obtained for the general three-dimensional loading, and further simplified for uniaxial tension applied parallel to the axis of inclusions. The ensuing stress and energy fields under tensile loading are illustrated for both hard inclusions and voids, ranging from prolate to oblate shapes, at several concentrations.


1972 ◽  
Vol 11 (63) ◽  
pp. 407-414 ◽  
Author(s):  
F. W. Smith

Abstract A two-dimensional finite element computer program has been used to compute the elastic stress distribution in realistic multi-layered snow packs. Computations have been done on three-layered and five-layered snow packs intended to simulate conditions on the Lift Gully at Berthoud Pass, Colorado. Calculations have been performed to determine the effect of a layer of new snow and the effect of a weak sub-layer. Stress levels were obtained which are reasonable compared with available snow strength data.


1962 ◽  
Vol 66 (617) ◽  
pp. 320-322 ◽  
Author(s):  
J. R. Dixon

SummaryTwo-dimensional photoelastic tests have been carried out on uni-axially loaded flat-plate specimens with two collinear edge slits, to investigate the effect of finite plate width on the elastic stress distribution. It was found that the effect of slitlength/ plate-width ratio on the elastic stress concentration at the end of the edge slit of length l was virtually the same as that for a central slit of length 2l in a plate of the same width, and could be adequately expressed by existing theories.


2006 ◽  
Vol 15 (2) ◽  
pp. 89-94 ◽  
Author(s):  
Seiji Wada ◽  
Noriyuki Wakabayashi ◽  
Takehisa Tanaka ◽  
Takashi Ohyama

Sign in / Sign up

Export Citation Format

Share Document