Influences of retrogressive erosion of reservoir on sedimentation of its downstream river channel—A case study on Sanmenxia Reservoir and the Lower Yellow River

2017 ◽  
Vol 32 (3) ◽  
pp. 373-383 ◽  
Author(s):  
Jianguo Chen ◽  
Wenhao Zhou ◽  
Shanshan Han ◽  
Gaohu Sun
2011 ◽  
Vol 255-260 ◽  
pp. 3692-3696
Author(s):  
Xiao Lei Zhang ◽  
Dong Po Sun ◽  
Feng Ran Zhang

The 2-D water and sediment mathematical model which reflects silting in floodplain and scouting in main channel of over-bank flooding in the Lower Yellow River has been set up in this paper. Through carrying on 2-D water and sediment numerical simulation of the “96.8” typical flood, the author studied influence of over-bank flooding on flood travel and transverse exchange. The primary simulation results show that, adopting the over-bank flooding for silting in floodplain and scouting in main channel effectively guaranteed and expanded transverse exchange between floodplain and main channel and maintained the river channel vigor. This can relieve “secondary suspended river” states in the Low Yellow River to a certain extent; at the same time, the different magnitudes of over-bank floods have different effect of silting in floodplain and scouting in main channel.


2011 ◽  
Vol 368-373 ◽  
pp. 1241-1244
Author(s):  
Xue Lan Sun ◽  
Chun Hong Hu ◽  
Jing Qi Xie

Based on the current situation of the Lower Yellow River channel, this paper analyses the factors affecting river health, points out that river channel health is the foundation and key to river health. It evaluates the Yellow River's downstream channel health using fuzzy comprehensive evaluation method and gets the conclusion that the Yellow River's downstream channel health has deteriorated in 50 years and has improved in the beginning of this century. This paper analyses and points out that the reservoir to regulate natural flow-sediment process is the primary means that the human impact on river health. The regulation of reservoir has duality that "excessive" regulation will seriously damage river health and "moderate" regulation can better maintain and restore river health. Coordination of flow-sediment relationship is the key to maintaining the health of the Lower Yellow River.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 357 ◽  
Author(s):  
Xiaofei Liu ◽  
Changxing Shi ◽  
Yuanyuan Zhou ◽  
Zhenkui Gu ◽  
Huijuan Li

River channel change can be very sensitive to environmental change and human activities and it has been one of the main research topics in fluvial geomorphology. In this study, repeated channel geometric measurements were used to investigate the channel adjustment to water and sediment changes of the lower Yellow River in China in the past few decades. With a high sediment concentration and large variations of water discharge, the lower Yellow River has a much active channel in its form and location, which has hindered previous research efforts to study long-term differentiated erosion/deposition of different geomorphic units in the channel. In this study, we divided each of four typical channel across-sections at hydrological stations in the lower Yellow River into different units according to the geomorphological features, and give a detailed investigation of erosion/deposition processes of these geomorphic units and the interactions between them besides the influence of incoming water and sediment conditions. The results show that with a significant decreasing trend of both the annual runoff and sediment load of the river and abrupt changes in 1985–1996, the overall siltation trend in the river channel before 1990 had been replaced by a slight erosion trend after 2006. In the earlier period, the siltation in the upstream wandering and transitional reaches mainly occurred on floodplains and that in the downstream straight reaches principally on main channel bed. In the later period, erosion occurred mainly on high and low bank slopes in the wandering reaches and on main channel bed in the transitional reaches. The erosion became weak in the wandering reaches after 2010, continued in the transitional reaches, and was still relatively minor in the straight reaches, reflecting the downstream hysteresis channel response to changes in water and sediment discharges down dams. Our results suggest that the seasonal erosion/deposition of a geomorphic unit of the river channel can be attributed to the changes in water and sediment discharges as well as to the interaction between geomorphic units. Siltation on the main channel bed could be attributed to erosion on the bank slopes in both the sections in the wandering and transitional reaches, and erosion of the main channel bed in flood seasons was negatively related with the mean water discharge at the two sections in the straight reaches. This result implies that fixing the bank slopes in the wandering and transitional reaches and raising the water discharge in the straight reach in flood seasons are favorable options for controlling the development of the two-level perching channel of the lower Yellow River.


Sign in / Sign up

Export Citation Format

Share Document