An experimental study on fire behavior of an inclined ceiling jet in a low-pressure environment

2019 ◽  
Vol 138 ◽  
pp. 487-495 ◽  
Author(s):  
Zhenxiang Tao ◽  
Rui Yang ◽  
Cong Li ◽  
Yina Yao ◽  
Ping Zhang ◽  
...  
2013 ◽  
Vol 31 (6) ◽  
pp. 481-494 ◽  
Author(s):  
Wei Yao ◽  
Xiaokang Hu ◽  
Jianzhong Rong ◽  
Jian Wang ◽  
Hui Zhang

Kerntechnik ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. 631-636
Author(s):  
Li Zi-chao ◽  
Qi Shi ◽  
Zhou Tao ◽  
Li Bing ◽  
Muhammad Ali Shahzad ◽  
...  

Author(s):  
Quanyi Liu ◽  
Wei Yao ◽  
Jiusheng Yin ◽  
Rui Yang ◽  
Hui Zhang

Airplane as one of the important transport vehicles in our life, its safety problem related to in-flight fire has attracted a wide-spread attention. The combustion behavior of the cabin fire in flight shows some special characteristics because of the high-altitude environment with low-pressure and low oxygen concentration. A low-pressure chamber of size 2 m×3 m×2 m has been built to simulate high-altitude environments, where multiple static pressures for pool fire tests can be configured in the range between standard atmospheric pressure 101.3KPa and 30KPa. Two different sizes of pool fires were tested. Then corresponding modeling were conducted by a LES code FDS V5.5 to examine the mechanism of pressure effect on the n-Heptane pool fire behavior. The burning of liquid fuel was modeled by a Clausius-Clapeyron relation based liquid pyrolysis model. The modeling data was validated against the experimental measurements. The mass burning rate of free-burning pool fire decreases with the decreasing of pressure, which was observed from the modeling to be due to the reduction of flame heat feedback to the fuel surface. Under low pressure, the fire plume temperature increases for the same burning rate. The mechanism of pressure effect on fire behavior was analyzed based on the modeling data.


Author(s):  
L. Simonassi ◽  
M. Zenz ◽  
P. Bruckner ◽  
S. Pramstrahler ◽  
F. Heitmeir ◽  
...  

Abstract The design of modern aero engines enhances the interaction between components and facilitates the propagation of circumferential distortions of total pressure and temperature. As a consequence, the inlet conditions of a real turbine have significant spatial non-uniformities, which have direct consequences on both its aerodynamic and vibration characteristics. This work presents the results of an experimental study on the effects of different inlet total pressure distortion-stator clocking positions on the propagation of total pressure inflow disturbances through a low pressure turbine stage, with a particular focus on both the aerodynamic and aeroelastic performance. Measurements at a stable engine relevant operating condition and during transient operation were carried out in a one and a half stage subsonic turbine test facility at the Institute of Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. A localised total pressure distortion was generated upstream of the stage in three different azimuthal positions relative to the stator vanes. The locations were chosen in order to align the distortion directly with a vane leading edge, suction side and pressure side. Additionally, a setup with clean inflow was used as reference. Steady and unsteady aerodynamic measurements were taken downstream of the investigated stage by means of a five-hole-probe (5HP) and a fast response aerodynamic pressure probe (FRAPP) respectively. Strain gauges applied on different blades were used in combination with a telemetry system to acquire the rotor vibration data. The aerodynamic interactions between the stator and rotor rows and the circumferential perturbation were studied through the identification of the main structures constituting the flow field. This showed that the steady and unsteady alterations created by the distortion in the flow field lead to modifications of the rotor vibration characteristics. Moreover, the importance of the impact that the pressure distortion azimuthal position has on the LPT stage aerodynamics and vibrations was highlighted.


Applied laser ◽  
2013 ◽  
Vol 33 (2) ◽  
pp. 181-185
Author(s):  
王金华 Wang Jinhua ◽  
袁根福 Yuan Genfu ◽  
逄志伟 Pang Zhiwei ◽  
陈春映 Chen Chunying

2014 ◽  
Vol 26 (5) ◽  
pp. 52006
Author(s):  
孙少华 Sun Shaohua ◽  
刘小亮 Liu Xiaoliang ◽  
孙铭泽 Sun Mingze ◽  
曹瑜 Cao Yu ◽  
史彦超 Shi Yanchao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document