Direct simulation of inlet region heat transfer in a channel with repeated ribs under iso-thermal wall heating condition

2020 ◽  
Vol 154 ◽  
pp. 106408
Author(s):  
Koji Matsubara ◽  
Hiroyuki Ohta ◽  
Takahiro Ishino
1999 ◽  
Author(s):  
Fang Yan ◽  
Bakhtier Farouk

Abstract High Knudsen (Kn) number flows are found in vacuum and micro-scale systems. Such flows are characterized by non-continuum behavior. For gases, the flows are usually in the slip or transition regimes. In this paper, the direct simulation Monte Carlo (DSMC) method has been applied to compute low pressure, high Kn flow fields in partially heated channels. Computations were carried out for nitrogen, argon, hydrogen, oxygen and noble gas mixtures. Variation of the Kn is obtained by reducing the pressure while keeping the channel width constant. Nonlinear pressure profiles along the channel centerline are observed. Heat transfer from the channel walls is also calculated and compared with the Graetz solution. The effects of varying pressure, inlet flow and gas transport properties (Kn, Reynolds number, Re and the Prandtl number, Pr respectively) on the wall heat transfer (Nu) were examined. A simplified correlation for predicting Nu¯ as a function of Pe¯ and Kn¯ is presented.


2018 ◽  
Vol 1105 ◽  
pp. 012018
Author(s):  
N I Mikheev ◽  
I M Gazizov ◽  
I A Davletshin

2012 ◽  
Vol 178-181 ◽  
pp. 237-243
Author(s):  
Li Ouyang ◽  
Wei Liu

In this paper, the physical models of the porous solar wall heating system with localized underfloor air distribution (UFAD) are established. Based on Brinkman-Forchheimer Extended Darcy and energy two-equation models for saturated porous medium, the influences of the structure of underfloor space on the heat transfer and flow characteristics of the system are simulated, analyzed and compared.The results show that the underfloor space with rational partition is good for improving the heat transfer and flow characteristics of system, and maintaining the cable system in the underfloor space.


Author(s):  
S. Jakirlic´ ◽  
B. Kniesner

Two backward-facing step (BFS) flow configurations associated with the heat transfer under the conditions of constant and variable fluid properties were investigated computationally by means of LES and a zonal Hybrid LES/RANS (HLR) method. The latter scheme couples a RANS (Reynolds-Averaged Navier-Stokes) model with large-eddy simulation (LES) within a two-layer framework. A differential near-wall eddy-viscosity model resolves the wall layer and the LES model the remainder of the flow domain. As an introductory heat-transfer case a fully-developed channel flow at Re number Rem = 24000 (DNS: Abe et al., 2004) was computed. In both presently investigated BFS cases the flow is subjected to increasingly enhanced wall heating. Whereas the first considered case (ReH = 28000, ER = 1.25), treated experimentally by Vogel and Eaton (1985) - reference LES is due to Keating et al., 2004, deals with a passive scalar transport, the high-intensity heat flux introduced into the flow domain through the step wall in the second investigated configuration (ReH = 5540, ER = 1.5; reference LES by Avancha and Pletcher, 2002; corresponding isothermal experiment by Kasagi and Matsunaga, 1995) leads to large temperature gradients causing a strong variation of the flow properties. An important feature of the latter flow is a substantial increase of the friction coefficient magnitude with the wall heating intensification in both the flow reversal and recovery region, associated with the local flow acceleration in the immediate wall vicinity. The results obtained by the present simulations with respect to the mean velocity and temperature fields, friction factor and Stanton number variations follow closely the reference experimental and LES databases.


Sign in / Sign up

Export Citation Format

Share Document