Permeability and thermal conductivity models of shale matrix with a bundle of tortuous fractal tree-like branching micropore networks

2021 ◽  
Vol 164 ◽  
pp. 106876
Author(s):  
Bowen Hu ◽  
Jianguo Wang ◽  
Zhanguo Ma ◽  
Shuxun Sang
Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3793
Author(s):  
Sylwia Wciślik

Currently; the transfer of new technologies makes it necessary to also control heat transfer in different industrial processes—both in practical and research—applications. Not so long ago water and ethylene glycol were the most frequently used media in heat transfer. However, due to their relatively low thermal conductivity, they cannot provide the fast and effective heat transfer necessary in modern equipment. To improve the heat transfer rate different additives to the base liquid are sought, e.g., nanoadditives that create mono and hybrid nanofluids with very high thermal conductivity. The number of scientific studies and publications concerning hybrid nanofluids is growing, although they still represent a small percentage of all papers on nanofluids (in 2013 it was only 0.6%, and in 2017—ca. 3%). The most important point of this paper is to discuss different ways of stabilizing nanofluids, which seems to be one of the most challenging tasks in nanofluid treatment. Other future challenges concerning mono and hybrid nanofluids are also thoroughly discussed. Moreover, a quality assessment of nanofluid preparation is also presented. Thermal conductivity models are specified as well and new representative mono and hybrid nanofluids are proposed.


Author(s):  
Miles Greiner ◽  
Kishore Kumar Gangadharan ◽  
Mithun Gudipati

Two-dimensional finite element thermal simulations of a generic rail package designed to transport twenty-one spent PWR assemblies were performed for normal transport conditions. Effective thermal conductivity models were employed within the fuel assembly/backfill gas region. Those conductivity models were developed by other investigators assuming the basket wall temperature is uniform. They are typically used to predict the maximum fuel cladding temperature near the package center. The cladding temperature must not exceed specified limits during normal transport. This condition limits the number and heat generation rate of fuel assembles that can transported. The current work shows the support basket wall temperatures in the periphery of the package are highly non-uniform. Moreover the thermal resistance of those regions significantly affects the maximum fuel clad temperature near the package center. This brings the validity of the fuel/backfill gas thermal conductivity models into question. The non-uniform basket wall temperature profiles quantified in this work will be used in future numerical and experimental studies to develop new thermal models of the fuel assembly/backfill gas regions. This will be an iterative process, since the assembly/backfill model affects the predicted basket wall temperature profiles.


Geoderma ◽  
2021 ◽  
Vol 382 ◽  
pp. 114694
Author(s):  
Hailong He ◽  
Gerald N. Flerchinger ◽  
Yuki Kojima ◽  
Miles Dyck ◽  
Jialong Lv

2012 ◽  
Vol 714 ◽  
pp. 21-24 ◽  
Author(s):  
B. Garnier ◽  
F. Danes

The context of this work is the enhancement of the thermal conductivity of polymer by adding conductive particles. It will be shown how we can use effective thermal conductivity models to investigate effect of various factors such as the volume fraction of filler, matrix thermal conductivity, thermal contact resistance, and inner diameter for hollow particles. Analytical models for lower bounds and finite element models will be discussed. It is shown that one can get some insights from effective thermal conductivity models for the tailoring of conductive composite, therefore reducing the amount of experimental work.


2007 ◽  
Vol 105 (6) ◽  
pp. 3309-3316 ◽  
Author(s):  
Jason M. Keith ◽  
Julia A. King ◽  
Kara M. Lenhart ◽  
Bridget Zimny

Sign in / Sign up

Export Citation Format

Share Document