scholarly journals Efficient Stabilization of Mono and Hybrid Nanofluids

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3793
Author(s):  
Sylwia Wciślik

Currently; the transfer of new technologies makes it necessary to also control heat transfer in different industrial processes—both in practical and research—applications. Not so long ago water and ethylene glycol were the most frequently used media in heat transfer. However, due to their relatively low thermal conductivity, they cannot provide the fast and effective heat transfer necessary in modern equipment. To improve the heat transfer rate different additives to the base liquid are sought, e.g., nanoadditives that create mono and hybrid nanofluids with very high thermal conductivity. The number of scientific studies and publications concerning hybrid nanofluids is growing, although they still represent a small percentage of all papers on nanofluids (in 2013 it was only 0.6%, and in 2017—ca. 3%). The most important point of this paper is to discuss different ways of stabilizing nanofluids, which seems to be one of the most challenging tasks in nanofluid treatment. Other future challenges concerning mono and hybrid nanofluids are also thoroughly discussed. Moreover, a quality assessment of nanofluid preparation is also presented. Thermal conductivity models are specified as well and new representative mono and hybrid nanofluids are proposed.

2018 ◽  
Vol 9 (1) ◽  
pp. 87 ◽  
Author(s):  
Sarah Simpson ◽  
Austin Schelfhout ◽  
Chris Golden ◽  
Saeid Vafaei

Due to the more powerful and miniaturized nature of modern devices, conventional heat-transfer working fluids are not capable of meeting the cooling needs of these systems. Therefore, it is necessary to improve the heat-transfer abilities of commonly used cooling fluids. Recently, nanoparticles with different characteristics have been introduced to base liquids to enhance the overall thermal conductivity. This paper studies the influence of various parameters, including base liquid, temperature, nanoparticle concentration, nanoparticle size, nanoparticle shape, nanoparticle material, and the addition of surfactant, on nanofluid thermal conductivity. The mechanisms of thermal conductivity enhancement by different parameters are discussed. The impact of nanoparticles on the enhanced thermal conductivity of nanofluids is clearly shown through plotting the thermal conductivities of nanofluids as a function of temperature and/or nanoparticle concentration on the same graphs as their respective base liquids. Additionally, the thermal conductivity of hybrid nanofluids, and the effects of the addition of carbon nanotubes on nanofluid thermal conductivity, are studied. Finally, modeling of nanofluid thermal conductivity is briefly reviewed.


Author(s):  
Anwar Ilmar RAMADHAN ◽  
Wan Hamzah AZMI ◽  
Rizalman MAMAT

In recent years, research has focused on enhancing the thermo-physical properties of a single component nanofluid. Therefore, hybrid or composite nanofluids have been developed to improve heat transfer performance. The thermo-physical properties of the Al2O3-TiO2-SiO2 nanoparticles suspended in a base of water (W) and ethylene glycol (EG) at constant volume ratio of 60:40 and different volume concentrations were investigated. The experiment was conducted for the volume concentrations of 0.05, 0.1, 0.2, and 0.3% of Al2O3-TiO2-SiO2 nanofluids at different temperatures of 30, 40, 50, 60, and 70 °C. Thermal conductivity and dynamic viscosity measurements were carried out at temperatures ranging from 30 to 70 °C by using KD2 Pro Thermal Properties Analyzer and Brookfield LVDV III Ultra Rheometer, respectively. The highest thermal conductivity for tri-hybrid nanofluids was obtained at 0.3% volume concentration, and the maximum enhancement was increased up to 9% higher than the base fluid (EG/W). Tri-hybrid nanofluids with a volume concentration of 0.05% gave the lowest effective thermal conductivity of 4.8 % at 70 °C temperature. Meanwhile, the dynamic viscosity of the tri-hybrid nanofluids was influenced by volume concentration and temperature. Furthermore, tri-hybrid nanofluids behaved as a Newtonian fluid for volume concentrations from 0.05 to 3.0%. The properties enhancement ratio (PER) estimated that the tri-hybrid nanofluids will aid in heat transfer for all samples in the present. The new correlations for thermal conductivity and dynamic viscosity of tri-hybrid nanofluids were developed with minimum deviation. As a conclusion, the combination of the enhancement in thermal conductivity and dynamic viscosity for tri-hybrid at 0.3% volume concentration was found the optimum condition with more advantage for heat transfer than other concentrations.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1100
Author(s):  
F. Benedict ◽  
Amit Kumar ◽  
K. Kadirgama ◽  
Hussein A. Mohammed ◽  
D. Ramasamy ◽  
...  

Due to the increasing demand in industrial application, nanofluids have attracted the considerable attention of researchers in recent decades. The addition of nanocellulose (CNC) with water (W) and ethylene glycol (EG) to a coolant for a radiator application exhibits beneficial properties to improve the efficiency of the radiator. The focus of the present work was to investigate the performance of mono or hybrid metal oxide such as Al2O3 and TiO2 with or without plant base-extracted CNC with varying concentrations as a better heat transfer nanofluid in comparison to distilled water as a radiator coolant. The CNC is dispersed in the base fluid of EG and W with a 60:40 ratio. The highest absorption peak was noticed at 0.9% volume concentration of TiO2, Al2O3, CNC, Al2O3/TiO2, and Al2O3/CNC nanofluids which indicates a better stability of the nanofluids’ suspension. Better thermal conductivity improvement was observed for the Al2O3 nanofluids in all mono nanofluids followed by the CNC and TiO2 nanofluids, respectively. The thermal conductivity of the Al2O3/CNC hybrid nanofluids with 0.9% volume concentration was found to be superior than that of the Al2O3/TiO2 hybrid nanofluids. Al2O3/CNC hybrid nanofluid dominates over other mono and hybrid nanofluids in terms of viscosity at all volume concentrations. CNC nanofluids (all volume concentrations) exhibited the highest specific heat capacity than other mono nanofluids. Additionally, in both hybrid nanofluids, Al2O3/CNC showed the lowest specific heat capacity. The optimized volume concentration from the statistical analytical tool was found to be 0.5%. The experimental results show that the heat transfer coefficient, convective heat transfer, Reynolds number and the Nusselt number have a proportional relationship with the volumetric flow rate. Hybrid nanofluids exhibit better thermal conductivity than mono nanofluids. For instance, a better thermal conductivity improvement was shown by the mono Al2O3 nanofluids than the CNC and TiO2 nanofluids. On the other hand, superior thermal conductivity was observed for the Al2O3/CNC hybrid nanofluids compared to the other mono and hybrid ones (Al2O3/TiO2).


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 725 ◽  
Author(s):  
Nadeem Ahmad Sheikh ◽  
Dennis Ling Chuan Ching ◽  
Ilyas Khan

In the present era, nanofluids are one of the most important and hot issue for scientists, physicists, and mathematicians. Nanofluids have many important and updated characteristics compared to conventional fluids. The thermal conductivity, thermal expansion, and the heat transfer rate of conventional fluids are not up to the mark for industrial and experimental uses. To overcome these deficiencies, nanoparticles have been dispersed into base fluids to make them more efficient. The heat transfer characteristics through symmetry trapezoidal-corrugated channels can be enhanced using nanofluids. In the present article, a literature survey has been presented for different models of nanofluids and their solutions—particularly, exact solutions. The models for hybrid nanofluids were also mentioned in the present study. Furthermore, some important and most used models for the viscosity, density, coefficient of thermal expansion, coefficient of mass expansion, heat capacitance, electrical conductivity, and thermal conductivity are also presented in tabular form. Moreover, some future suggestions are also provided in this article.


Author(s):  
Navdeep Singh ◽  
Debjyoti Banerjee

Due to their very high thermal conductivity carbon nanotubes have been found to be an excellent material for thermal management. Experiments have shown that the heaters coated with carbon nanotubes increase the heat transfer by as much as 60%. Also when nanotubes are used as filler materials in composites, they tend to increase the thermal conductivity of the composites. But the increase in the heat transfer and the thermal conductivity has been found to be much less than the calculated values. This decrease has been attributed to the interfacial thermal resistance between the carbon nanotubes and the surrounding material. MD simulations were performed to study the interfacial thermal resistance between the carbon nanotubes and the liquid molecules. In the simulations, the nanotube is placed at the center of the simulation box and a temperature of 300K is imposed on the system. Then the temperature of the nanotube is raised instantaneously and the system is allowed to relax. From the temperature decay, the interfacial thermal resistance between the carbon nanotube and the liquid molecules is calculated. In this study the liquid molecules under investigation are n-heptane, n-tridecane and n-nonadecane.


Author(s):  
Daili Feng ◽  
Yanhui Feng ◽  
Xinxin Zhang ◽  
Ge Wang

CMK-3 is a typical of carbon rods which are arranged in relatively regular two-dimensional hexagonal array. In our study, the effective thermal conductivity of CMK-3 composite is investigated. For the thermal conductivity of carbon rods, the equilibrium molecular dynamics (EMD) is performed with Tersoff potential. The influences of porosity and temperature are also considered. For the thermal conductivity of air confined in mesoporous can be estimated by the frequently used Kaganer model. Then, the effective thermal conductivity models developed for coupled heat transfer of air and solid are obtained by the unit cell method. ETCs along the X and Y directions are extremely poor, due to the overwhelming effect of air thermal resistance. However, in the Z direction, the ETC improves almost linearly as the porosity decreases, and the value is much higher than those of X and Y directions. This study is in attempts to explore the possibility of CMK-3 being a proper substrate for thermal usage.


2021 ◽  
Vol 9 ◽  
Author(s):  
Adeola O. Borode ◽  
Noor A. Ahmed ◽  
Peter A. Olubambi ◽  
Mohsen Sharifpur ◽  
Josua P. Meyer

This paper investigates the thermophysical properties and heat transfer performance of graphene nanoplatelet (GNP) and alumina hybrid nanofluids at different mixing ratios. The electrical conductivity and viscosity of the nanofluids were obtained at temperatures between 15–55°C. The thermal conductivity was measured at temperatures between 20–40°C. The natural convection properties, including Nusselt number, Rayleigh number, and heat transfer coefficient, were experimentally obtained at different temperature gradients (20, 25, 30, and 35°C) in a rectangular cavity. The Mouromtseff number was used to theoretically estimate all the nanofluids’ forced convective performance at temperatures between 20–40°C. The results indicated that the thermal conductivity and viscosity of water are increased with the hybrid nanomaterial. On the other hand, the viscosity and thermal conductivity of the hybrid nanofluids are lesser than that of mono-GNP nanofluids. Notwithstanding, of all the hybrid nanofluids, GNP-alumina hybrid nanofluid with a mixing ratio of 50:50 and 75:25 were found to have the highest thermal conductivity and viscosity, enhancing thermal conductivity by 4.23% and increasing viscosity by 15.79%, compared to water. Further, the addition of the hybrid nanomaterials improved the natural convective performance of water while it deteriorates with mono-GNP. The maximum augmentation of 6.44 and 10.48% were obtained for Nuaverage and haverage of GNP-Alumina (50:50) hybrid nanofluid compared to water, respectively. This study shows that hybrid nanofluids are more effective for heat transfer than water and mono-GNP nanofluid.


Author(s):  
Yubai Xiao ◽  
Hu Zhang ◽  
Junmei Wu

Abstract In recent years, hybrid nanofluids, as a new kind of working fluid, have been widely studied because they possessing better heat transfer performance than single component nanofluids when prepared with proper constituents and proportions. The application of hybrid nanofluids in nuclear power system as a working fluid is an effective way of improving the capability of In-Vessel Retention (IVR) when the reactor is in a severe accident. In order to obtain hybrid nanofluids with excellent heat transfer performance, three kinds of hybrid nanofluids with high thermal conductivity are measured by transient plane source method, and their viscosity and stability are also investigated experimentally. These experimental results are used to evaluate the heat transfer efficiency of hybrid nanofluids. The results show that: (1) The thermal conductivity of hybrid nanofluids increases with increasing temperature and volume concentration. When compared to the base fluid, the thermal conductivity of Al2O3-CuO/H2O, Al2O3-C/H2O and AlN-TiO2/H2O nanofluids at 0.25% volume concentration increased by 36%, 24%, and 22%, respectively. (2) Surfactants can improve the stability of hybrid nanofluids. The Zeta potential value is related to the thermal conductivity of the hybrid nanofluids, and it could be used to explain the relationship between the thermal conductivity of the hybrid nanofluids and the dispersion. It also could provide a reference for subsequent screening of high thermal conductivity nanofluids. (3) The addition of C/H2O can effectively reduce the dynamic viscosity coefficient of hybrid nanofluids. (4) The analysis of heat transfer efficiency of the hybrid nanofluids found that both Al2O3-CuO/H2O and Al2O3-C/H2O have better heat transfer ability than water under certain mixing conditions. This study is conducive to further optimizing hybrid nanofluids and its application to the In-Vessel Retention in severe reactor accidents.


Sign in / Sign up

Export Citation Format

Share Document