An experimental investigation on the effects of a slot exit protrusion on film cooling effectiveness

2022 ◽  
Vol 172 ◽  
pp. 107306
Author(s):  
Gi Mun Kim ◽  
Jae Su Kwak ◽  
Jung Uk Choi
Author(s):  
M. Rezasoltani ◽  
M. T. Schobeiri ◽  
J. C. Han

The impact of the purge flow injection on aerodynamics and film cooling effectiveness of a three-stage high pressure turbine with non-axisymmetric endwall contouring has been experimentally investigated. As a continuation of the previously published work involving stator-rotor gap purge cooling, this study investigates film cooling effectiveness on the first stage rotor contoured platform due to a coolant gas injection. Film cooling effectiveness measurements are performed on the rotor blade platform using a pressure sensitive paint (PSP) technique. The present study examines, in particular, the film cooling effectiveness due to injection of coolant from the rotor cavity through the circumferential gap between the first stator followed by the first rotor. Efficiency and performance experiments were conducted with and without cooling injection to show (a) the impact of endwall contouring on the turbine efficiency and (b) the impact of film cooling injection in association with the endwall contouring. The experimental investigation is carried out in a three-stage turbine facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL) at Texas A&M University. Its rotor includes non-axisymmetric endwall contouring on the first and second rotor row [1]. The turbine has two independent cooling loops. Film cooling effectiveness measurements are performed for three coolant-to-mainstream mass flow ratios of 0.5%, 1.0% and 1.5%. Film cooling data is also obtained for three rotational speeds, 3000 rpm (reference condition), 2550 rpm and 2400 rpm and compared with non-contoured endwall data.


1985 ◽  
Vol 107 (1) ◽  
pp. 84-91 ◽  
Author(s):  
B. Jubran ◽  
A. Brown

This paper describes the results of an experimental investigation into the film cooling effectiveness of two rows of holes inclined in the stream and spanwise directions. The effects of hole and row spacings and combinations of inclinations are investigated in the presence of free-stream pressure gradients and turbulence for a typical range of blowing rates.


1968 ◽  
Vol 90 (4) ◽  
pp. 384-393 ◽  
Author(s):  
R. J. Goldstein ◽  
E. R. G. Eckert ◽  
J. W. Ramsey

An experimental investigation has been conducted to determine the film cooling effectiveness with injection of air through a discrete hole into a turbulent boundary layer of air on a flat plate. The secondary air enters at either an angle of 35 deg or an angle of 90 deg to the main flow. The film cooling effectiveness is found to be considerably different from that obtained in previous studies in which the secondary fluid was introduced through a continuous slot.


Author(s):  
Felix Jesuraj ◽  
Raghavan Rajendran ◽  
Kumar Gottekre Narayanappa ◽  
Giridhara Babu Yepuri ◽  
Vivek Sasikumar ◽  
...  

The gas turbine combustor liner which is subjected to high temperature requires efficient cooling. In earlier days concept of slot film cooling is utilized in the combustion liners and in modern combustors multiple row film cooling (effusion cooling) is mainly used. This study aims at the experimental investigation of overall film cooling effectiveness of an effusion plate with and without impingement holes at the backside. The experiments are done at different blowing ratios and the surface temperature measurements are taken using infrared thermography. The effusion and impingement holes are arranged in staggered manner on two parallel plates and each effusion hole is surrounded by four impingement holes. Effusion holes are drilled at an angle of 27° and the impingement plate is kept at a distance of 6D away from the effusion plate. The experiments are done on the effusion plate with and without impingement plate at the backside. The results show, increase in cooling effectiveness as the blowing ratio increases. The comparative results shows that at a particular blowing ratio the overall cooling effectiveness is higher for effusion plate with impingement holes at the backside due to the higher convective heat transfer coefficients produced by the impinging jets at the cold side of the effusion plate.


1978 ◽  
Vol 100 (2) ◽  
pp. 303-307 ◽  
Author(s):  
M. Y. Jabbari ◽  
R. J. Goldstein

Results of an experimental investigation of film cooling and heat transfer following injection through two staggered rows of holes are reported. The two staggered rows are considerably more effective in protecting the wall than a single row. The film cooling effectiveness at locations beyond about 30-hole dia downstream of injection is laterally uniform. The heat transfer coefficient is within a few percent of that without injection at low blowing rates, but it increases rapidly as the blowing rate increases above unity.


Sign in / Sign up

Export Citation Format

Share Document