Experimental Investigation on the Effect of Mainstream Turbulence on Full Coverage Film Cooling Effectiveness for a Turbine Guide Vane

2019 ◽  
Vol 28 (1) ◽  
pp. 145-157
Author(s):  
Zhongyi Fu ◽  
Huiren Zhu ◽  
Lijian Cheng ◽  
Ru Jiang
Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 287
Author(s):  
Jin Hang ◽  
Jingzhou Zhang ◽  
Chunhua Wang ◽  
Yong Shan

Single-row double-jet film cooling (DJFC) of a turbine guide vane is numerically investigated in the present study, under a realistic aero-thermal condition. The double-jet units are positioned at specific locations, with 57% axial chord length (Cx) on the suction side or 28% Cx on the pressure side with respect to the leading edge of the guide vane. Three spanwise spacings (Z) in double-jet unit (Z = 0, 0.5d, and 1.0d, here d is the film hole diameter) and four spanwise injection angles (β = 11°, 17°, 23°, and 29°) are considered in the layout design of double jets. The results show that the layout of double jets affects the coupling of adjacent jets and thus subsequently changes the jet-in-crossflow dynamics. Relative to the spanwise injection angle, the spanwise spacing in a double-jet unit is a more important geometric parameter that affects the jet-in-crossflow dynamics in the downstream flowfield. With the increase in the spanwise injection angle and spanwise spacing in the double-jet unit, the film cooling effectiveness is generally improved. On the suction surface, DJFC does not show any benefit on film cooling improvement under smaller blowing ratios. Only under larger blowing ratios does its positive potential for film cooling enhancement start to show. Compared to the suction surface, the positive potential of the DJFC on enhancing film cooling effectiveness behaves more obviously on the pressure surface. In particular, under large blowing ratios, the DJFC plays dual roles in suppressing jet detachment and broadening the coolant jet spread in a spanwise direction. With regard to the DJFC on the suction surface, its main role in film cooling enhancement relies on the improvement of the spanwise film layer coverage on the film-cooled surface.


2004 ◽  
Vol 10 (5) ◽  
pp. 345-354 ◽  
Author(s):  
Jan Dittmar ◽  
Achmed Schulz ◽  
Sigmar Wittig

The demand of improved thermal efficiency and high power output of modern gas turbine engines leads to extremely high turbine inlet temperature and pressure ratios. Sophisticated cooling schemes including film cooling are widely used to protect the vanes and blades of the first stages from failure and to achieve high component lifetimes. In film cooling applications, injection from discrete holes is commonly used to generate a coolant film on the blade's surface.In the present experimental study, the film cooling performance in terms of the adiabatic film cooling effectiveness and the heat transfer coefficient of two different injection configurations are investigated. Measurements have been made using a single row of fanshaped holes and a double row of cylindrical holes in staggered arrangement. A scaled test model was designed in order to simulate a realistic distribution of Reynolds number and acceleration parameter along the pressure side surface of an actual turbine guide vane. An infrared thermography measurement system is used to determine highly resolved distribution of the models surface temperature. Anin-situcalibration procedure is applied using single embedded thermocouples inside the measuring plate in order to acquire accurate local temperature data.All holes are inclined 35° with respect to the model's surface and are oriented in a streamwise direction with no compound angle applied. During the measurements, the influence of blowing ratio and mainstream turbulence level on the adiabatic film cooling effectiveness and heat transfer coefficient is investigated for both of the injection configurations.


Author(s):  
Mukesh Prakash Mishra ◽  
A K Sahani ◽  
Sunil Chandel ◽  
R K Mishra

Abstract In the present work numerical study of full coverage film cooling on an adiabatic flat plate is carried out. Cooling performance of three configurations of cylindrical holes is studied with downstream injection, upstream injection and mixed injection. In mixed injection configuration one column of holes inject in downstream direction and the holes in the adjacent column inject in the upstream direction. Numerical simulations are carried out at different velocity ratios and circumferentially averaged value of adiabatic film cooling effectiveness is estimated. Simulation results indicate that the mixed injection configuration has better and more uniform cooling, throughout the perforated plate, than with downstream injection. The difference is greater with increase in the velocity ratio. Configuration with upstream injection gives better cooling than mixed injection at front few rows of cooling holes but it shows poorer performance with downstream injection in the downstream rows of cooling holes. The obtained results from this study can be an invaluable input for highly loaded combustion chambers.


Author(s):  
S. Ravelli ◽  
G. Barigozzi

The performance of a showerhead arrangement of film cooling in the leading edge region of a first stage nozzle guide vane was experimentally and numerically evaluated. A six-vane linear cascade was tested at an isentropic exit Mach number of Ma2s = 0.42, with a high inlet turbulence intensity level of 9%. The showerhead cooling scheme consists of four staggered rows of cylindrical holes evenly distributed around the stagnation line, angled at 45° towards the tip. The blowing ratios tested are BR = 2.0, 3.0 and 4.0. Adiabatic film cooling effectiveness distributions on the vane surface around the leading edge region were measured by means of Thermochromic Liquid Crystals technique. Since the experimental contours of adiabatic effectiveness showed that there is no periodicity across the span, the CFD calculations were conducted by simulating the whole vane. Within the RANS framework, the very widely used Realizable k-ε (Rke) and the Shear Stress Transport k-ω (SST) turbulence models were chosen for simulating the effect of the BR on the surface distribution of adiabatic effectiveness. The turbulence model which provided the most accurate steady prediction, i.e. Rke, was selected for running Detached Eddy Simulation at the intermediate value of BR = 3. Fluctuations of the local temperature were computed by DES, due to the vortex structures within the shear layers between the main flow and the coolant jets. Moreover, mixing was enhanced both in the wall-normal and spanwise direction, compared to RANS modeling. DES roughly halved the prediction error of laterally averaged film cooling effectiveness on the suction side of the leading edge. However, neither DES nor RANS provided the expected decay of effectiveness progressing downstream along the pressure side, with 15% overestimation of ηav at s/C =0.2.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Nathan Rogers ◽  
Zhong Ren ◽  
Warren Buzzard ◽  
Brian Sweeney ◽  
Nathan Tinker ◽  
...  

Experimental results are presented for a double wall cooling arrangement which simulates a portion of a combustor liner of a gas turbine engine. The results are collected using a new experimental facility designed to test full-coverage film cooling and impingement cooling effectiveness using either cross flow, impingement, or a combination of both to supply the film cooling flow. The present experiment primarily deals with cross flow supplied full-coverage film cooling for a sparse film cooling hole array that has not been previously tested. Data are provided for turbulent film cooling, contraction ratio of 1, blowing ratios ranging from 2.7 to 7.5, coolant Reynolds numbers based on film cooling hole diameter of about 5000–20,000, and mainstream temperature step during transient tests of 14 °C. The film cooling hole array consists of a film cooling hole diameter of 6.4 mm with nondimensional streamwise (X/de) and spanwise (Y/de) film cooling hole spacing of 15 and 4, respectively. The film cooling holes are streamwise inclined at an angle of 25 deg with respect to the test plate surface and have adjacent streamwise rows staggered with respect to each other. Data illustrating the effects of blowing ratio on adiabatic film cooling effectiveness and heat transfer coefficient are presented. For the arrangement and conditions considered, heat transfer coefficients generally increase with streamwise development and increase with increasing blowing ratio. The adiabatic film cooling effectiveness is determined from measurements of adiabatic wall temperature, coolant stagnation temperature, and mainstream recovery temperature. The adiabatic wall temperature and the adiabatic film cooling effectiveness generally decrease and increase, respectively, with streamwise position, and generally decrease and increase, respectively, as blowing ratio becomes larger.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Giovanna Barigozzi ◽  
Antonio Perdichizzi ◽  
Silvia Ravelli

Tests on a specifically designed linear nozzle guide vane cascade with trailing edge coolant ejection were carried out to investigate the influence of trailing edge bleeding on both aerodynamic and thermal performance. The cascade is composed of six vanes with a profile typical of a high pressure turbine stage. The trailing edge cooling features a pressure side cutback with film cooling slots, stiffened by evenly spaced ribs in an inline configuration. Cooling air is ejected not only through the slots but also through two rows of cooling holes placed on the pressure side, upstream of the cutback. The cascade was tested for different isentropic exit Mach numbers, ranging from M2is = 0.2 to M2is = 0.6, while varying the coolant to mainstream mass flow ratio MFR up to 2.8%. The momentum boundary layer behavior at a location close to the trailing edge, on the pressure side, was assessed by means of laser Doppler measurements. Cases with and without coolant ejection allowed us to identify the contribution of the coolant to the off the wall velocity profile. Thermochromic liquid crystals (TLC) were used to map the adiabatic film cooling effectiveness on the pressure side cooled region. As expected, the cutback effect on cooling effectiveness, compared to the other cooling rows, was dominant.


Author(s):  
S. Ravelli ◽  
G. Barigozzi

The main purpose of this numerical investigation is to overcome the limitations of the steady modeling in predicting the cooling efficiency over the cutback surface in a high pressure turbine nozzle guide vane. Since discrepancy between Reynolds-averaged Navier–Stokes (RANS) predictions and measured thermal coverage at the trailing edge was attributable to unsteadiness, Unsteady RANS (URANS) modeling was implemented to evaluate improvements in simulating the mixing between the mainstream and the coolant exiting the cutback slot. With the aim of reducing the computation effort, only a portion of the airfoil along the span was simulated at an exit Mach number of Ma2is = 0.2. Three values of the coolant-to-mainstream mass flow ratio were considered: MFR = 0.66%, 1.05%, and 1.44%. Nevertheless the inherent vortex shedding from the cutback lip was somehow captured by the URANS method, the computed mixing was not enough to reproduce the measured drop in adiabatic effectiveness η along the streamwise direction, over the cutback surface. So modeling was taken a step further by using the Scale Adaptive Simulation (SAS) method at MFR = 1.05%. Results from the SAS approach were found to have potential to mimic the experimental measurements. Vortices shedding from the cutback lip were well predicted in shape and magnitude, but with a lower frequency, as compared to PIV data and flow visualizations. Moreover, the simulated reduction in film cooling effectiveness toward the trailing edge was similar to that observed experimentally.


Author(s):  
M. Rezasoltani ◽  
M. T. Schobeiri ◽  
J. C. Han

The impact of the purge flow injection on aerodynamics and film cooling effectiveness of a three-stage high pressure turbine with non-axisymmetric endwall contouring has been experimentally investigated. As a continuation of the previously published work involving stator-rotor gap purge cooling, this study investigates film cooling effectiveness on the first stage rotor contoured platform due to a coolant gas injection. Film cooling effectiveness measurements are performed on the rotor blade platform using a pressure sensitive paint (PSP) technique. The present study examines, in particular, the film cooling effectiveness due to injection of coolant from the rotor cavity through the circumferential gap between the first stator followed by the first rotor. Efficiency and performance experiments were conducted with and without cooling injection to show (a) the impact of endwall contouring on the turbine efficiency and (b) the impact of film cooling injection in association with the endwall contouring. The experimental investigation is carried out in a three-stage turbine facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL) at Texas A&M University. Its rotor includes non-axisymmetric endwall contouring on the first and second rotor row [1]. The turbine has two independent cooling loops. Film cooling effectiveness measurements are performed for three coolant-to-mainstream mass flow ratios of 0.5%, 1.0% and 1.5%. Film cooling data is also obtained for three rotational speeds, 3000 rpm (reference condition), 2550 rpm and 2400 rpm and compared with non-contoured endwall data.


Sign in / Sign up

Export Citation Format

Share Document