Experimental Investigation on Effect of Cross-Flow Reynolds Number on Film Cooling Effectiveness

AIAA Journal ◽  
2019 ◽  
Vol 57 (11) ◽  
pp. 4804-4818 ◽  
Author(s):  
Lin Ye ◽  
Cun-liang Liu ◽  
Hui-ren Zhu ◽  
Jian-xia Luo
Author(s):  
Aaron F. Shinn ◽  
S. Pratap Vanka

Large Eddy Simulations were performed to study the effect of a micro-ramp on an inclined turbulent jet interacting with a cross-flow in a film-cooling configuration. The micro-ramp vortex generator is placed downstream of the film-cooling jet. Changes in vortex structure and film-cooling effectiveness are evaluated and the genesis of the counter-rotating vortex pair in the jet is discussed. Results are reported with the jet modeled using a plenum/pipe configuration. This configuration was designed based on previous wind tunnel experiments at NASA Glenn Research Center, and the present results are meant to supplement those experiments. It is found that the micro-ramp improves film-cooling effectiveness by generating near-wall counter-rotating vortices which help entrain coolant from the jet and transport it to the surface. The pair of vortices generated by the micro-ramp are of opposite sense to the vortex pair embedded in the jet.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Nathan Rogers ◽  
Zhong Ren ◽  
Warren Buzzard ◽  
Brian Sweeney ◽  
Nathan Tinker ◽  
...  

Experimental results are presented for a double wall cooling arrangement which simulates a portion of a combustor liner of a gas turbine engine. The results are collected using a new experimental facility designed to test full-coverage film cooling and impingement cooling effectiveness using either cross flow, impingement, or a combination of both to supply the film cooling flow. The present experiment primarily deals with cross flow supplied full-coverage film cooling for a sparse film cooling hole array that has not been previously tested. Data are provided for turbulent film cooling, contraction ratio of 1, blowing ratios ranging from 2.7 to 7.5, coolant Reynolds numbers based on film cooling hole diameter of about 5000–20,000, and mainstream temperature step during transient tests of 14 °C. The film cooling hole array consists of a film cooling hole diameter of 6.4 mm with nondimensional streamwise (X/de) and spanwise (Y/de) film cooling hole spacing of 15 and 4, respectively. The film cooling holes are streamwise inclined at an angle of 25 deg with respect to the test plate surface and have adjacent streamwise rows staggered with respect to each other. Data illustrating the effects of blowing ratio on adiabatic film cooling effectiveness and heat transfer coefficient are presented. For the arrangement and conditions considered, heat transfer coefficients generally increase with streamwise development and increase with increasing blowing ratio. The adiabatic film cooling effectiveness is determined from measurements of adiabatic wall temperature, coolant stagnation temperature, and mainstream recovery temperature. The adiabatic wall temperature and the adiabatic film cooling effectiveness generally decrease and increase, respectively, with streamwise position, and generally decrease and increase, respectively, as blowing ratio becomes larger.


2021 ◽  
Author(s):  
Jie Wang ◽  
Chao Zhang ◽  
Xuebin Liu ◽  
Liming Song ◽  
Jun Li ◽  
...  

Abstract Aiming at investigating the effects of crossflow and vortex generator on film cooling characteristics of fan-shaped hole, the film cooling performance was measured experimentally by infrared camera. The blowing ratio is fixed at 0.5 and 1.5. The Reynolds number of the mainstream based on the hole diameter remains at 7000 and the inlet Reynolds number of crossflow is 40000. The experimental results show that the film cooling performance becomes better when the blowing ratio increases from 0.5 to 1.5 for each model, and the film cooling performance becomes worse under the influence of crossflow. When the blowing ratio is 1.5, the area-averaged film cooling effectiveness of the fan-shaped hole model with vortex generator decreases by 16.6% because of the influence of crossflow. The combined model always performs better compared with the model without vortex generator under all working conditions. When the blowing ratio becomes 1.5, under the influence of crossflow, the area-averaged film cooling effectiveness of the combined model could increase by 14.8%, compared with the model without vortex generator. To further improve the film cooling performance, the global optimization algorithm based on the Kriging method and the CFD technology are coupled to optimize the combined model under crossflow condition at the high blowing ratio, and the optimized design is verified by experiments. The experimental results show that the area-averaged film cooling effectiveness of the optimized design increases by 17.8% compared with the reference model.


Author(s):  
Khodayar Javadi ◽  
Aliyar Javadi

A well performance film cooling implies for a high cooling effectives accompanied with a wide cooling coverage. During the past six decades, film cooling effectiveness has been well defined with a specific relation to quantify it. However, despite of numerous film cooling research, there is not an explicit method to quantify the uniformity of a coolant film spread over the hot surfaces. This work introduces a cooling uniformity coefficient (CUC) to evaluate how well a coolant film spreads over a surface being cooled. Four different cases are computationally studied. In the three cases, a single jet is injected into a hot cross flow with different jet exit shapes (i.e. square, spanwise rectangular, and streamwise rectangular). The fourth case is a novel combined triple jet (CTJ) introduced in our previous work. The cross sections of all the systems are equal to maintain the same coolant mass flow rate injection into the hot cross flow. The CUC’s of the different cases are compared with each other at two blowing ratios of 0.5 and 1.5. It is proposed that in addition to the film cooling effectiveness, the CUC is a necessary parameter to evaluate how well a coolant film is spread over a hot surface.


Author(s):  
Nirmal Halder ◽  
Arun Saha ◽  
Pradipta Panigrahi

Abstract A simulation study is performed to inspect the influence of delta winglet pair for improving the film cooling effectiveness of gas turbine blade. Incompressible continuity, momentum, energy and two equations - SST model have been used for investigating the nature of flow field, temperature field and turbulent statistics. Reynolds number based on the jet velocity and film cooling hole diameter is 4232. The jet to cross-flow blowing ratio has been varied as 0.5, 1.0 and 1.5. The corresponding Reynolds numbers based on cross-flow velocity and film-hole diameter are equal to 6462, 4229 and 3231 respectively. It is observed that common flow down configuration augments the film cooling effectiveness which attributed to the development of secondary longitudinal vortices. Longitudinal vortices annihilate the counter rotating vortex structures present in the baseline flow. The generation of hairpin vortices and boost of shear layer vortices are modified due to the implementation of Delta winglet pair. The overall turbulence intensity and vorticity get reduced due to the presence of Delta winglet pair. A maximum of 97.46% and a minimum of 61.50% enhancement in film cooling effectiveness is observed at blowing ratio of 1.5 and 0.5 respectively.Wake region of film cooling jet is modified due to Delta winglet pair leading to formation of stagnation region and lower mixing resulting in higher film cooling effectiveness.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Marc Fraas ◽  
Tobias Glasenapp ◽  
Achmed Schulz ◽  
Hans-Jörg Bauer

Internal coolant passages of gas turbine vanes and blades have various orientations relative to the external hot gas flow. As a consequence, the inflow of film cooling holes varies as well. To further identify the influencing parameters of film cooling under varying inflow conditions, the present paper provides detailed experimental data. The generic study is performed in a novel test rig, which enables compliance with all relevant similarity parameters including density ratio. Film cooling effectiveness as well as heat transfer of a 10–10–10 deg laidback fan-shaped cooling hole is discussed. Data are processed and presented over 50 hole diameters downstream of the cooling hole exit. First, the parallel coolant flow setup is discussed. Subsequently, it is compared to a perpendicular coolant flow setup at a moderate coolant channel Reynolds number. For the perpendicular coolant flow, asymmetric flow separation in the diffuser occurs and leads to a reduction of film cooling effectiveness. For a higher coolant channel Reynolds number and perpendicular coolant flow, asymmetry increases and cooling effectiveness is further decreased. An increase in blowing ratio does not lead to a significant increase in cooling effectiveness. For all cases investigated, heat transfer augmentation due to film cooling is observed. Heat transfer is highest in the near-hole region and decreases further downstream. Results prove that coolant flow orientation has a severe impact on both parameters.


Author(s):  
Habeeb Idowu Oguntade ◽  
Gordon E. Andrews ◽  
Alan Burns ◽  
Derek B. Ingham ◽  
Mohammed Pourkashanian

This paper presents the influence of the shaped trailing edge of trench outlets on film cooling effectiveness and aerodynamics. A 90° outlet wall to a trench will give a vertical slot jet into the cross flow and it was considered that improvements in the cooling effectiveness would occur if the trailing edge of the trench outlet was bevelled or filleted. CFD approach was used for these investigations which started with the predictions of the conventional sharp edged trench outlet for two experimental geometries. The computational predictions for the conventional sharp edged trench outlet were shown to have good agreement with the experimental data for two experimental geometries. The shaped trailing edge of the trench outlet was predicted to improve the film cooling effectiveness. The bevelled and filleted trench outlets were predicted to further suppress vertical jet momentum and give a Coanda effect that allowed the cooling air to attach to the downstream wall surface with a better transverse spread of the coolant film. The new trench outlet geometries would allow a reduction in film cooling mass flow rate for the same cooling effectiveness. Also, it was predicted that reducing the coolant mass flow per hole and increasing the number of holes gave, for the same total coolant mass flow, a much superior surface averaged cooling effectiveness for the same cooled surface area.


Author(s):  
M. Rezasoltani ◽  
M. T. Schobeiri ◽  
J. C. Han

The impact of the purge flow injection on aerodynamics and film cooling effectiveness of a three-stage high pressure turbine with non-axisymmetric endwall contouring has been experimentally investigated. As a continuation of the previously published work involving stator-rotor gap purge cooling, this study investigates film cooling effectiveness on the first stage rotor contoured platform due to a coolant gas injection. Film cooling effectiveness measurements are performed on the rotor blade platform using a pressure sensitive paint (PSP) technique. The present study examines, in particular, the film cooling effectiveness due to injection of coolant from the rotor cavity through the circumferential gap between the first stator followed by the first rotor. Efficiency and performance experiments were conducted with and without cooling injection to show (a) the impact of endwall contouring on the turbine efficiency and (b) the impact of film cooling injection in association with the endwall contouring. The experimental investigation is carried out in a three-stage turbine facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL) at Texas A&M University. Its rotor includes non-axisymmetric endwall contouring on the first and second rotor row [1]. The turbine has two independent cooling loops. Film cooling effectiveness measurements are performed for three coolant-to-mainstream mass flow ratios of 0.5%, 1.0% and 1.5%. Film cooling data is also obtained for three rotational speeds, 3000 rpm (reference condition), 2550 rpm and 2400 rpm and compared with non-contoured endwall data.


1985 ◽  
Vol 107 (1) ◽  
pp. 84-91 ◽  
Author(s):  
B. Jubran ◽  
A. Brown

This paper describes the results of an experimental investigation into the film cooling effectiveness of two rows of holes inclined in the stream and spanwise directions. The effects of hole and row spacings and combinations of inclinations are investigated in the presence of free-stream pressure gradients and turbulence for a typical range of blowing rates.


Sign in / Sign up

Export Citation Format

Share Document