CrossFusion net: Deep 3D object detection based on RGB images and point clouds in autonomous driving

2020 ◽  
Vol 100 ◽  
pp. 103955
Author(s):  
Dza-Shiang Hong ◽  
Hung-Hao Chen ◽  
Pei-Yung Hsiao ◽  
Li-Chen Fu ◽  
Siang-Min Siao
Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1205
Author(s):  
Zhiyu Wang ◽  
Li Wang ◽  
Bin Dai

Object detection in 3D point clouds is still a challenging task in autonomous driving. Due to the inherent occlusion and density changes of the point cloud, the data distribution of the same object will change dramatically. Especially, the incomplete data with sparsity or occlusion can not represent the complete characteristics of the object. In this paper, we proposed a novel strong–weak feature alignment algorithm between complete and incomplete objects for 3D object detection, which explores the correlations within the data. It is an end-to-end adaptive network that does not require additional data and can be easily applied to other object detection networks. Through a complete object feature extractor, we achieve a robust feature representation of the object. It serves as a guarding feature to help the incomplete object feature generator to generate effective features. The strong–weak feature alignment algorithm reduces the gap between different states of the same object and enhances the ability to represent the incomplete object. The proposed adaptation framework is validated on the KITTI object benchmark and gets about 6% improvement in detection average precision on 3D moderate difficulty compared to the basic model. The results show that our adaptation method improves the detection performance of incomplete 3D objects.


2021 ◽  
Author(s):  
Hung-Hao Chen ◽  
Chia-Hung Wang ◽  
Hsueh-Wei Chen ◽  
Pei-Yung Hsiao ◽  
Li-Chen Fu ◽  
...  

The current fusion-based methods transform LiDAR data into bird’s eye view (BEV) representations or 3D voxel, leading to information loss and heavy computation cost of 3D convolution. In contrast, we directly consume raw point clouds and perform fusion between two modalities. We employ the concept of region proposal network to generate proposals from two streams, respectively. In order to make two sensors compensate the weakness of each other, we utilize the calibration parameters to project proposals from one stream onto the other. With the proposed multi-scale feature aggregation module, we are able to combine the extracted regionof-interest-level (RoI-level) features of RGB stream from different receptive fields, resulting in fertilizing feature richness. Experiments on KITTI dataset show that our proposed network outperforms other fusion-based methods with meaningful improvements as compared to 3D object detection methods under challenging setting.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6043
Author(s):  
Yujun Jiao ◽  
Zhishuai Yin

A two-phase cross-modality fusion detector is proposed in this study for robust and high-precision 3D object detection with RGB images and LiDAR point clouds. First, a two-stream fusion network is built into the framework of Faster RCNN to perform accurate and robust 2D detection. The visible stream takes the RGB images as inputs, while the intensity stream is fed with the intensity maps which are generated by projecting the reflection intensity of point clouds to the front view. A multi-layer feature-level fusion scheme is designed to merge multi-modal features across multiple layers in order to enhance the expressiveness and robustness of the produced features upon which region proposals are generated. Second, a decision-level fusion is implemented by projecting 2D proposals to the space of the point cloud to generate 3D frustums, on the basis of which the second-phase 3D detector is built to accomplish instance segmentation and 3D-box regression on the filtered point cloud. The results on the KITTI benchmark show that features extracted from RGB images and intensity maps complement each other, and our proposed detector achieves state-of-the-art performance on 3D object detection with a substantially lower running time as compared to available competitors.


2020 ◽  
Vol 34 (07) ◽  
pp. 12557-12564 ◽  
Author(s):  
Zhenbo Xu ◽  
Wei Zhang ◽  
Xiaoqing Ye ◽  
Xiao Tan ◽  
Wei Yang ◽  
...  

3D object detection is an essential task in autonomous driving and robotics. Though great progress has been made, challenges remain in estimating 3D pose for distant and occluded objects. In this paper, we present a novel framework named ZoomNet for stereo imagery-based 3D detection. The pipeline of ZoomNet begins with an ordinary 2D object detection model which is used to obtain pairs of left-right bounding boxes. To further exploit the abundant texture cues in rgb images for more accurate disparity estimation, we introduce a conceptually straight-forward module – adaptive zooming, which simultaneously resizes 2D instance bounding boxes to a unified resolution and adjusts the camera intrinsic parameters accordingly. In this way, we are able to estimate higher-quality disparity maps from the resized box images then construct dense point clouds for both nearby and distant objects. Moreover, we introduce to learn part locations as complementary features to improve the resistance against occlusion and put forward the 3D fitting score to better estimate the 3D detection quality. Extensive experiments on the popular KITTI 3D detection dataset indicate ZoomNet surpasses all previous state-of-the-art methods by large margins (improved by 9.4% on APbv (IoU=0.7) over pseudo-LiDAR). Ablation study also demonstrates that our adaptive zooming strategy brings an improvement of over 10% on AP3d (IoU=0.7). In addition, since the official KITTI benchmark lacks fine-grained annotations like pixel-wise part locations, we also present our KFG dataset by augmenting KITTI with detailed instance-wise annotations including pixel-wise part location, pixel-wise disparity, etc.. Both the KFG dataset and our codes will be publicly available at https://github.com/detectRecog/ZoomNet.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 136
Author(s):  
Fangyu Li ◽  
Weizheng Jin ◽  
Cien Fan ◽  
Lian Zou ◽  
Qingsheng Chen ◽  
...  

3D object detection in LiDAR point clouds has been extensively used in autonomous driving, intelligent robotics, and augmented reality. Although the one-stage 3D detector has satisfactory training and inference speed, there are still some performance problems due to insufficient utilization of bird’s eye view (BEV) information. In this paper, a new backbone network is proposed to complete the cross-layer fusion of multi-scale BEV feature maps, which makes full use of various information for detection. Specifically, our proposed backbone network can be divided into a coarse branch and a fine branch. In the coarse branch, we use the pyramidal feature hierarchy (PFH) to generate multi-scale BEV feature maps, which retain the advantages of different levels and serves as the input of the fine branch. In the fine branch, our proposed pyramid splitting and aggregation (PSA) module deeply integrates different levels of multi-scale feature maps, thereby improving the expressive ability of the final features. Extensive experiments on the challenging KITTI-3D benchmark show that our method has better performance in both 3D and BEV object detection compared with some previous state-of-the-art methods. Experimental results with average precision (AP) prove the effectiveness of our network.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 704 ◽  
Author(s):  
Hongwu Kuang ◽  
Bei Wang ◽  
Jianping An ◽  
Ming Zhang ◽  
Zehan Zhang

Object detection in point cloud data is one of the key components in computer vision systems, especially for autonomous driving applications. In this work, we present Voxel-Feature Pyramid Network, a novel one-stage 3D object detector that utilizes raw data from LIDAR sensors only. The core framework consists of an encoder network and a corresponding decoder followed by a region proposal network. Encoder extracts and fuses multi-scale voxel information in a bottom-up manner, whereas decoder fuses multiple feature maps from various scales by Feature Pyramid Network in a top-down way. Extensive experiments show that the proposed method has better performance on extracting features from point data and demonstrates its superiority over some baselines on the challenging KITTI-3D benchmark, obtaining good performance on both speed and accuracy in real-world scenarios.


Signals ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 98-107
Author(s):  
Yiran Li ◽  
Han Xie ◽  
Hyunchul Shin

Three-dimensional (3D) object detection is essential in autonomous driving. Three-dimensional (3D) Lidar sensor can capture three-dimensional objects, such as vehicles, cycles, pedestrians, and other objects on the road. Although Lidar can generate point clouds in 3D space, it still lacks the fine resolution of 2D information. Therefore, Lidar and camera fusion has gradually become a practical method for 3D object detection. Previous strategies focused on the extraction of voxel points and the fusion of feature maps. However, the biggest challenge is in extracting enough edge information to detect small objects. To solve this problem, we found that attention modules are beneficial in detecting small objects. In this work, we developed Frustum ConvNet and attention modules for the fusion of images from a camera and point clouds from a Lidar. Multilayer Perceptron (MLP) and tanh activation functions were used in the attention modules. Furthermore, the attention modules were designed on PointNet to perform multilayer edge detection for 3D object detection. Compared with a previous well-known method, Frustum ConvNet, our method achieved competitive results, with an improvement of 0.27%, 0.43%, and 0.36% in Average Precision (AP) for 3D object detection in easy, moderate, and hard cases, respectively, and an improvement of 0.21%, 0.27%, and 0.01% in AP for Bird’s Eye View (BEV) object detection in easy, moderate, and hard cases, respectively, on the KITTI detection benchmarks. Our method also obtained the best results in four cases in AP on the indoor SUN-RGBD dataset for 3D object detection.


2019 ◽  
Vol 9 (6) ◽  
pp. 1065 ◽  
Author(s):  
Kai Xu ◽  
Zhile Yang ◽  
Yangjie Xu ◽  
Liangbing Feng

This paper aims at tackling the task of fusion feature from images and their corresponding point clouds for 3D object detection in autonomous driving scenarios based on AVOD, an Aggregate View Object Detection network. The proposed fusion algorithms fuse features targeted from Bird’s Eye View (BEV) LIDAR point clouds and their corresponding RGB images. Differing in existing fusion methods, which are simply the adoption of the concatenation module, the element-wise sum module or the element-wise mean module, our proposed fusion algorithms enhance the interaction between BEV feature maps and their corresponding image feature maps by designing a novel structure, where single level feature maps and utilize multilevel feature maps. Experiments show that our proposed fusion algorithm produces better results on 3D mAP and AHS with less speed loss compared to the existing fusion method used on the KITTI 3D object detection benchmark.


2020 ◽  
Vol 12 (11) ◽  
pp. 1895 ◽  
Author(s):  
Jiarong Wang ◽  
Ming Zhu ◽  
Bo Wang ◽  
Deyao Sun ◽  
Hua Wei ◽  
...  

In this paper, we propose a novel 3D object detector KDA3D, which achieves high-precision and robust classification, segmentation, and localization with the help of key-point densification and multi-attention guidance. The proposed end-to-end neural network architecture takes LIDAR point clouds as the main inputs that can be optionally complemented by RGB images. It consists of three parts: part-1 segments 3D foreground points and generates reliable proposals; part-2 (optional) enhances point cloud density and reconstructs the more compact full-point feature map; part-3 refines 3D bounding boxes and adds semantic segmentation as extra supervision. Our designed lightweight point-wise and channel-wise attention modules can adaptively strengthen the “skeleton” and “distinctiveness” point-features to help feature learning networks capture more representative or finer patterns. The proposed key-point densification component can generate pseudo-point clouds containing target information from monocular images through the distance preference strategy and K-means clustering so as to balance the density distribution and enrich sparse features. Extensive experiments on the KITTI and nuScenes 3D object detection benchmarks show that our KDA3D produces state-of-the-art results while running in near real-time with a low memory footprint.


Author(s):  
Kai Xu ◽  
Zhile Yang ◽  
Yangjie Xu ◽  
Liangbing Feng

This paper aims at tackling with the task of fusion feature from images and its corresponding point clouds for 3D object detection in autonomous driving scenarios basing on AVOD, an Aggregate View Object Detection network. The proposed fusion algorithms fuse features targeted from Bird’s Eye View (BEV) LIDAR point clouds and its corresponding RGB images. Differs in existing fusion methods, which are simply the adoptions of concatenation module, element-wise sum module or element-wise mean module, our proposed fusion algorithms enhance the interaction between BEV feature maps and its corresponding images feature maps by designing a novel structure, where single level feature maps and another utilizes multilevel feature maps. Experiments show that our proposed fusion algorithm produces better results on 3D mAP and AHS with less speed loss comparing to existing fusion method used on the KITTI 3D object detection benchmark.


Sign in / Sign up

Export Citation Format

Share Document