fine branch
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Cuc Thi Nguyen ◽  
Katsuharu Saito

Arbuscular mycorrhizal fungi provide plants with soil mineral nutrients, particularly phosphorus. In this symbiotic association, the arbuscular interface is the main site for nutrient exchange. To understand phosphorus transfer at the interface, we analyzed the subcellular localization of polyphosphate (polyP) in mature arbuscules of Rhizophagus irregularis colonizing roots of Lotus japonicus wild-type (WT) and H+-ATPase ha1-1 mutant, which is defective in phosphorus acquisition through the mycorrhizal pathway. In both, the WT and the ha1-1 mutant, polyP accumulated in the cell walls of trunk hyphae and inside fine branch modules close to the trunk hyphae. However, many fine branches lacked polyP. In the mutant, most fine branch modules showed polyP signals compared to the WT. Notably, polyP was also observed in the cell walls of some fine branches formed in the ha1-1 mutant, indicating phosphorus release from fungal cells to the apoplastic regions. Intense acid phosphatase (ACP) activity was detected in the periarbuscular spaces around the fine branches. Furthermore, double staining of ACP activity and polyP revealed that these had contrasting distribution patterns in arbuscules. These observations suggest that polyP in fungal cell walls and apoplastic phosphatases may play an important role in phosphorus transfer at the symbiotic interface in arbuscules.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Wenjuan Cai ◽  
Yanzhe Wang ◽  
Liya Gu ◽  
Xuefeng Ji ◽  
Qiusheng Shen ◽  
...  

This paper presents an in-depth study and analysis of the 3D arterial centerline in spiral CT coronary angiography, and constructs its detection and extraction technique. The first time, the distance transform is used to complete the boundary search of the original figure; the second time, the distance transform is used to calculate the value of the distance transform of all voxels, and according to the value of the distance transform, unnecessary voxels are deleted, to complete the initial contraction of the vascular region and reduce the computational consumption in the next process; then, the nonwitnessed voxels are used to construct the maximum inner joint sphere model and find the skeletal voxels that can reflect the shape of the original figure. Finally, the skeletal lines were optimized on these initially extracted skeletal voxels using a dichotomous-like principle to obtain the final coronary artery centerline. Through the evaluation of the experimental results, the algorithm can extract the coronary centerline more accurately. In this paper, the segmentation method is evaluated on the test set data by two kinds of indexes: one is the index of segmentation result evaluation, including dice coefficient, accuracy, specificity, and sensitivity; the other is the index of clinical diagnosis result evaluation, which is to refine the segmentation result for vessel diameter detection. The results obtained in this paper were compared with the physicians’ labeling results. In terms of network performance, the Dice coefficient obtained in this paper was 0.89, the accuracy was 98.36%, the sensitivity was 93.36%, and the specificity was 98.76%, which reflected certain advantages in comparison with the advanced methods proposed by previous authors. In terms of clinical evaluation indexes, by performing skeleton line extraction and diameter calculation on the results obtained by the segmentation method proposed in this paper, the absolute error obtained after comparing with the diameter of the labeled image was 0.382 and the relative error was 0.112, which indicates that the segmentation method in this paper can recover the vessel contour more accurately. Then, the results of coronary artery centerline extraction with and without fine branch elimination were evaluated, which proved that the coronary artery centerline has higher accuracy after fine branch elimination. The algorithm is also used to extract the centerline of the complete coronary artery tree, and the results prove that the algorithm has better results for the centerline extraction of the complete coronary vascular tree.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 136
Author(s):  
Fangyu Li ◽  
Weizheng Jin ◽  
Cien Fan ◽  
Lian Zou ◽  
Qingsheng Chen ◽  
...  

3D object detection in LiDAR point clouds has been extensively used in autonomous driving, intelligent robotics, and augmented reality. Although the one-stage 3D detector has satisfactory training and inference speed, there are still some performance problems due to insufficient utilization of bird’s eye view (BEV) information. In this paper, a new backbone network is proposed to complete the cross-layer fusion of multi-scale BEV feature maps, which makes full use of various information for detection. Specifically, our proposed backbone network can be divided into a coarse branch and a fine branch. In the coarse branch, we use the pyramidal feature hierarchy (PFH) to generate multi-scale BEV feature maps, which retain the advantages of different levels and serves as the input of the fine branch. In the fine branch, our proposed pyramid splitting and aggregation (PSA) module deeply integrates different levels of multi-scale feature maps, thereby improving the expressive ability of the final features. Extensive experiments on the challenging KITTI-3D benchmark show that our method has better performance in both 3D and BEV object detection compared with some previous state-of-the-art methods. Experimental results with average precision (AP) prove the effectiveness of our network.


2018 ◽  
Vol 301 (3) ◽  
pp. 434-440 ◽  
Author(s):  
Joseph E. Rupert ◽  
J. Ethan Joll ◽  
Wiaam Y. Elkhatib ◽  
Jason M. Organ

2015 ◽  
Vol 276 (7) ◽  
pp. 759-765 ◽  
Author(s):  
Craig D. Byron ◽  
Anthony Herrel ◽  
Elin Pauwels ◽  
Amelie De Muynck ◽  
Biren A. Patel
Keyword(s):  

2012 ◽  
Vol 51 (No. 2) ◽  
pp. 55-59 ◽  
Author(s):  
K. Besoluk ◽  
E. Eken ◽  
S. Bahar

The aim of this study was to reveal the branches of the descending palatine artery, and its relation to the vomeronasal organ inAngoragoats. For this purpose, ten heads of adultAngoragoats obtained from a slaughterhouse were used. The ramifications of the latex enjected descending palatine artery and their vomeronasal organ-related findings were revealed by fine dissection and transverse sections. Arterial blood reached the caudally vomeronasal organ primarily via the sphenopalatine artery, and also cranially via a fine branch of the major palatine artery by crossing the palatine fissure. The average diameters of both the descending palatine artery and its branches were thicker on the left side than on the right, and its ramifications were not variable in this species.


Lab Animal ◽  
2009 ◽  
Vol 38 (11) ◽  
pp. 369-374 ◽  
Author(s):  
Craig D. Byron ◽  
William Knight ◽  
Shep Ladson ◽  
Hawley Kunz ◽  
Leighton Elliot
Keyword(s):  

2009 ◽  
Vol 54 (No. 4) ◽  
pp. 194-197
Author(s):  
A. Aydin ◽  
G. Dinc ◽  
S. Yilmaz

In this study, the spinal nerves that constitute the plexus lumbosacrales of porcupines (<I>Hystrix cristata</I>) were investigated. Four porcupines (two males and two females) were used in this work. Animals were appropriately dissected and the spinal nerves that constitute the plexus lumbosacrales were examined. It was found that the plexus lumbosacrales of the porcupines was formed by whole rami ventralis of L1, L2, L3, L4, S1 and a fine branch from T15 and S2. The rami ventralis of T15 and S2 were divided into two branches. The caudal branch of T15 and cranial branch of S2 contributed to the plexus lumbosacrales. At the last part of the plexus lumbosacrales, a thick branch was formed by contributions from the whole of L4 and S1, and a branch from each of L3 and S2. This root gives rise to the nerve branches which are disseminated to the posterior legs (caudal gluteal nerve, caudal cutaneous femoral nerve, ischiadic nerve). Thus, the origins of spinal nerves that constitute the plexus lumbosacrales of porcupine differ from rodantia and other mammals.


Sign in / Sign up

Export Citation Format

Share Document