Role of Toll like receptor 4 signaling pathway in the secondary damage induced by experimental spinal cord injury

Immunobiology ◽  
2015 ◽  
Vol 220 (9) ◽  
pp. 1039-1049 ◽  
Author(s):  
Daniela Impellizzeri ◽  
Akbar Ahmad ◽  
Rosanna Di Paola ◽  
Michela Campolo ◽  
Michele Navarra ◽  
...  
2007 ◽  
Vol 423 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Tiziana Genovese ◽  
Emanuela Mazzon ◽  
Emanuela Esposito ◽  
Carmelo Muià ◽  
Rosanna Di Paola ◽  
...  

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Nicolas Pelisch ◽  
Jose Rosas Almanza ◽  
Kyle E. Stehlik ◽  
Brandy V. Aperi ◽  
Antje Kroner

Abstract Background Secondary damage after spinal cord injury (SCI) is characterized by a cascade of events including hemorrhage, apoptosis, oxidative stress, and inflammation which increase the lesion size which can influence the functional impairment. Thus, identifying specific mechanisms attributed to secondary injury is critical in minimizing tissue damage and improving neurological outcome. In this work, we are investigating the role of CCL3 (macrophage inflammatory protein 1-α, MIP-1α), a chemokine involved in the recruitment of inflammatory cells, which plays an important role in inflammatory conditions of the central and peripheral nervous system. Methods A mouse model of lower thoracic (T11) spinal cord contusion injury was used. We assessed expression levels of CCL3 and its receptors on the mRNA and protein level and analyzed changes in locomotor recovery and the inflammatory response in the injured spinal cord of wild-type and CCL3−/− mice. Results The expression of CCL3 and its receptors was increased after thoracic contusion SCI in mice. We then examined the role of CCL3 after SCI and its direct influence on the inflammatory response, locomotor recovery and lesion size using CCL3−/− mice. CCL3−/− mice showed mild but significant improvement of locomotor recovery, a smaller lesion size and reduced neuronal damage compared to wild-type controls. In addition, neutrophil numbers as well as the pro-inflammatory cytokines and chemokines, known to play a deleterious role after SCI, were markedly reduced in the absence of CCL3. Conclusion We have identified CCL3 as a potential target to modulate the inflammatory response and secondary damage after SCI. Collectively, this study shows that CCL3 contributes to progressive tissue damage and functional impairment during secondary injury after SCI.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Dayu Pan ◽  
Yongjin Li ◽  
Fuhan Yang ◽  
Zenghui Lv ◽  
Shibo Zhu ◽  
...  

Abstract Background Traumatic spinal cord injury (SCI) is a severely disabling disease that leads to loss of sensation, motor, and autonomic function. As exosomes have great potential in diagnosis, prognosis, and treatment of SCI because of their ability to easily cross the blood–brain barrier, the function of Schwann cell-derived exosomes (SCDEs) is still largely unknown. Methods A T10 spinal cord contusion was established in adult female mice. SCDEs were injected into the tail veins of mice three times a week for 4 weeks after the induction of SCI, and the control group was injected with PBS. High-resolution transmission electron microscope and western blot were used to characterize the SCDEs. Toll-like receptor 2 (TLR2) expression on astrocytes, chondroitin sulfate proteoglycans (CSPGs) deposition and neurological function recovery were measured in the spinal cord tissues of each group by immunofluorescence staining of TLR2, GFAP, CS56, 5-HT, and β-III-tublin, respectively. TLR2f/f mice were crossed to the GFAP-Cre strain to generate astrocyte specific TLR2 knockout mice (TLR2−/−). Finally, western blot analysis was used to determine the expression of signaling proteins and IKKβ inhibitor SC-514 was used to validate the involved signaling pathway. Results Here, we found that TLR2 increased significantly on astrocytes post-SCI. SCDEs treatment can promote functional recovery and induce the expression of TLR2 on astrocytes accompanied with decreased CSPGs deposition. The specific knockout of TLR2 on astrocytes abolished the decreasing CSPGs deposition and neurological functional recovery post-SCI. In addition, the signaling pathway of NF-κB/PI3K involved in the TLR2 activation was validated by western blot. Furthermore, IKKβ inhibitor SC-514 was also used to validate this signaling pathway. Conclusion Thus, our results uncovered that SCDEs can promote functional recovery of mice post-SCI by decreasing the CSPGs deposition via increasing the TLR2 expression on astrocytes through NF-κB/PI3K signaling pathway.


2020 ◽  
Author(s):  
Chenyu Wu ◽  
Huanwen Chen ◽  
Rong Zhuang ◽  
Yongli Wang ◽  
Xinli Hu ◽  
...  

Abstract Background:Spinal cord injury (SCI) results in a wide range of disabilities. Its complex pathophysiological process limits the effectiveness of many clinical treatments. Betulinic acid (BA) has been shown to be an effective treatment for some neurological diseases, but it has not been studied in SCI. In this study, we assessed the role of BA in SCI and investigated its underlying mechanism. Methods:Using a mouse model of SCI, survival and functional outcomes following injury were assessed. Western blotting, ELISA, and immunofluorescence techniques were employed to analyze levels of autophagy, mitophagy, and pyroptosis; ROS- and AMPK-related signaling pathways were also examined. Results:Our results showed that BA significantly improves functional recovery following SCI. Furthermore, autophagy, mitophagy, ROS-activity and pyroptosis were implicated in the mechanism of BA in the treatment of SCI. Specifically, our results suggest that BA restored autophagy flux following injury, which induces mitophagy to eliminate the accumulation of ROS and subsequently inhibits pyroptosis. Further mechanistic studies revealed that BA likely regulates autophagy and mitophagy via the AMPK-mTOR-TFEB signaling pathway. Conclusion: BA can significantly promote the recovery following SCI and that it may be a promising therapy for SCI.


2003 ◽  
Vol 959 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Joo-Kyung Sung ◽  
Liyan Miao ◽  
John W Calvert ◽  
Lixin Huang ◽  
H Louis Harkey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document