scholarly journals A Role for Lipid Bodies in the Cross-presentation of Phagocytosed Antigens by MHC Class I in Dendritic Cells

Immunity ◽  
2009 ◽  
Vol 31 (2) ◽  
pp. 232-244 ◽  
Author(s):  
Laurence Bougnères ◽  
Julie Helft ◽  
Sangeeta Tiwari ◽  
Pablo Vargas ◽  
Benny Hung-Junn Chang ◽  
...  
Blood ◽  
2012 ◽  
Vol 119 (6) ◽  
pp. 1407-1417 ◽  
Author(s):  
Francesca Spadaro ◽  
Caterina Lapenta ◽  
Simona Donati ◽  
Laura Abalsamo ◽  
Vincenzo Barnaba ◽  
...  

Abstract Cross-presentation allows antigen-presenting cells to present exogenous antigens to CD8+ T cells, playing an essential role in controlling infections and tumor development. IFN-α induces the rapid differentiation of human mono-cytes into dendritic cells, known as IFN-DCs, highly efficient in mediating cross-presentation, as well as the cross-priming of CD8+ T cells. Here, we have investigated the mechanisms underlying the cross-presentation ability of IFN-DCs by studying the intracellular sorting of soluble ovalbumin and nonstructural-3 protein of hepatitis C virus. Our results demonstrate that, independently from the route and mechanism of antigen entry, IFN-DCs are extraordinarily competent in preserving internalized proteins from early degradation and in routing antigens toward the MHC class-I processing pathway, allowing long-lasting, cross-priming capacity. In IFN-DCs, both early and recycling endosomes function as key compartments for the storage of both antigens and MHC-class I molecules and for proteasome- and transporter-associated with Ag processing–dependent auxiliary cross-presentation pathways. Because IFN-DCs closely resemble human DCs naturally occurring in vivo in response to infections and other danger signals, these findings may have important implications for the design of vaccination strategies in neoplastic or chronic infectious diseases.


2016 ◽  
Vol 196 (4) ◽  
pp. 1711-1720 ◽  
Author(s):  
Wenbin Ma ◽  
Yi Zhang ◽  
Nathalie Vigneron ◽  
Vincent Stroobant ◽  
Kris Thielemans ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2313-2313
Author(s):  
Frank Grünebach ◽  
Markus M. Weck ◽  
Silke Appel ◽  
Daniela Werth ◽  
Christian Sinzger ◽  
...  

Abstract Human (h)Dectin-1 is a member of the C-type-lectin-like receptor family that was shown to be the major receptor for fungal β-glucans and to play an important role in cellular responses mediated by these carbohydrates. It is mainly expressed on human DCs and macrophages. In our study, we observed that activation of monocyte-derived dendritic cells (MDCs) with TLR3 ligand (poly I:C) but not with TLR ligand 7/8 (R848) resulted in down-regulation of hDectin-1 expression and this down-regulation correlated with a reduced uptake of apoptotic cells in phagocytosis assays. In order to analyze the possible cross-presentation of engulfed antigens we used CMV infected human fibroblasts (HFF). We found that hDectin-1 is involved in the uptake of CMV-infected HFF leading to cross-presentation of CMV-derived peptides on MHC class I molecules and activation of CMV pp65-specific CD8+ T-lymphocytes. To further delineate the pathway leading to presentation, we pretreated MDCs with compounds that inhibit processing of antigens at defined steps during presentation. Cytosolic protein degradation is performed by the proteasome, a large multicatalytic protease complex. Lactacystin specifically inhibits the 20S and 26S proteasome activity by targeting the catalytic subunit. In standard 51Cr-release assays, addition of lactacystin completely inhibited the presentation of pp65-derived peptides indicating the involvement of the proteasome in these process. The fungal product brefeldin A blocks the MHC class I processing pathway by specifically inhibiting the vesicular egress from the ER and the Golgi complex. In line with previous findings, incubation with brefeldin A almost completely abolished the lysis of MDCs incubated with CMV+ HFF. To further analyze whether the cross-presentation of CMV-derived peptides on HLA class I molecules was dependent on lysosomal proteases, MDCs that were co-incubated with HFF as above were treated with the lysosomotropic agent chloroquine that prevents acidification of the lysosomal compartment involved in the exogenous pathway of antigen presentation. The addition of chloroquine had no effect on the cross-presentation of CMV-derived epitopes on HLA class I-molecules. Summarized, the data reported here show that hDectin-1 functions not only as a pattern recognition receptor in innate immunity but is also involved in the clearing of apoptotic cells and cross-presentation of cellular antigens on MHC class I molecules to specific CTLs.


2002 ◽  
Vol 168 (12) ◽  
pp. 6057-6065 ◽  
Author(s):  
Oliver Schulz ◽  
Daniel J. Pennington ◽  
Kairbaan Hodivala-Dilke ◽  
Maria Febbraio ◽  
Caetano Reis e Sousa

2002 ◽  
Vol 196 (6) ◽  
pp. 817-827 ◽  
Author(s):  
Joke M.M. den Haan ◽  
Michael J. Bevan

Murine splenic dendritic cells (DCs) can be divided into two subsets based on CD8α expression, but the specific role of each subset in stimulation of T cells is largely unknown. An important function of DCs is the ability to take up exogenous antigens and cross-present them in the context of major histocompatibility complex (MHC) class I molecules to CD8+ T cells. We previously demonstrated that, when cell-associated ovalbumin (OVA) is injected into mice, only the CD8+ DC subset cross-presents OVA in the context of MHC class I. In contrast to this selectivity with cell-associated antigen, we show here that both DC subsets isolated from mice injected with OVA/anti-OVA immune complexes (OVA-IC) cross-present OVA to CD8+ T cells. The use of immunoglobulin G Fc receptor (FcγR) common γ-chain–deficient mice revealed that the cross-presentation by CD8− DCs depended on the expression of γ-chain–containing activating FcγRs, whereas cross-presentation by CD8+ DCs was not reduced in γ-chain–deficient mice. These results suggest that although CD8+ DCs constitutively cross-present exogenous antigens in the context of MHC class I molecules, CD8− DCs only do so after activation, such as via ligation of FcγRs. Cross-presentation of immune complexes may play an important role in autoimmune diseases and the therapeutic effect of antitumor antibodies.


2009 ◽  
Vol 206 (2) ◽  
pp. 399-410 ◽  
Author(s):  
Romina S. Goldszmid ◽  
Isabelle Coppens ◽  
Avital Lev ◽  
Pat Caspar ◽  
Ira Mellman ◽  
...  

Toxoplasma gondii tachyzoites infect host cells by an active invasion process leading to the formation of a specialized compartment, the parasitophorous vacuole (PV). PVs resist fusion with host cell endosomes and lysosomes and are thus distinct from phagosomes. Because the parasite remains sequestered within the PV, it is unclear how T. gondii–derived antigens (Ag’s) access the major histocompatibility complex (MHC) class I pathway for presentation to CD8+ T cells. We demonstrate that recruitment of host endoplasmic reticulum (hER) to the PV in T. gondii–infected dendritic cells (DCs) directly correlates with cross-priming of CD8+ T cells. Furthermore, we document by immunoelectron microscopy the transfer of hER components into the PV, a process indicative of direct fusion between the two compartments. In strong contrast, no association between hER and phagosomes or Ag presentation activity was observed in DCs containing phagocytosed live or dead parasites. Importantly, cross-presentation of parasite-derived Ag in actively infected cells was blocked when hER retrotranslocation was inhibited, indicating that the hER serves as a conduit for the transport of Ag between the PV and host cytosol. Collectively, these findings demonstrate that pathogen-driven hER–PV interaction can serve as an important mechanism for Ag entry into the MHC class I pathway and CD8+ T cell cross-priming.


Sign in / Sign up

Export Citation Format

Share Document