scholarly journals Viral DNA Binding to NLRC3, an Inhibitory Nucleic Acid Sensor, Unleashes STING, a Cyclic Dinucleotide Receptor that Activates Type I Interferon

Immunity ◽  
2019 ◽  
Vol 50 (3) ◽  
pp. 591-599.e6 ◽  
Author(s):  
Xin Li ◽  
Meng Deng ◽  
Alex S. Petrucelli ◽  
Cheng Zhu ◽  
Jinyao Mo ◽  
...  
2010 ◽  
Vol 11 (6) ◽  
pp. 487-494 ◽  
Author(s):  
Pengyuan Yang ◽  
Huazhang An ◽  
Xingguang Liu ◽  
Mingyue Wen ◽  
Yuanyuan Zheng ◽  
...  

2009 ◽  
Vol 11 (4) ◽  
pp. R112 ◽  
Author(s):  
Donna L Thibault ◽  
Kareem L Graham ◽  
Lowen Y Lee ◽  
Imelda Balboni ◽  
Paul J Hertzog ◽  
...  

2012 ◽  
Vol 109 (36) ◽  
pp. 14550-14555 ◽  
Author(s):  
J. Di Domizio ◽  
S. Dorta-Estremera ◽  
M. Gagea ◽  
D. Ganguly ◽  
S. Meller ◽  
...  

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Mickaël Bouvet ◽  
Stefanie Voigt ◽  
Takanobu Tagawa ◽  
Manuel Albanese ◽  
Yen-Fu Adam Chen ◽  
...  

ABSTRACT Epstein-Barr virus (EBV), a human herpesvirus, encodes 44 microRNAs (miRNAs), which regulate many genes with various functions in EBV-infected cells. Multiple target genes of the EBV miRNAs have been identified, some of which play important roles in adaptive antiviral immune responses. Using EBV mutant derivatives, we identified additional roles of viral miRNAs in governing versatile type I interferon (IFN) responses upon infection of human primary mature B cells. We also found that Epstein-Barr virus-encoded small RNAs (EBERs) and LF2, viral genes with previously reported functions in inducing or regulating IFN-I pathways, had negligible or even contrary effects on secreted IFN-α in our model. Data mining and Ago PAR-CLIP experiments uncovered more than a dozen previously uncharacterized, direct cellular targets of EBV miRNA associated with type I IFN pathways. We also identified indirect targets of EBV miRNAs in B cells, such as TRL7 and TLR9, in the prelatent phase of infection. The presence of epigenetically naive, non-CpG methylated viral DNA was essential to induce IFN-α secretion during EBV infection in a TLR9-dependent manner. In a newly established fusion assay, we verified that EBV virions enter a subset of plasmacytoid dendritic cells (pDCs) and determined that these infected pDCs are the primary producers of IFN-α in EBV-infected peripheral blood mononuclear cells. Our findings document that many EBV-encoded miRNAs regulate type I IFN response in newly EBV infected primary human B cells in the prelatent phase of infection and dampen the acute release of IFN-α in pDCs upon their encounter with EBV. IMPORTANCE Acute antiviral functions of all nucleated cells rely on type I interferon (IFN-I) pathways triggered upon viral infection. Host responses encompass the sensing of incoming viruses, the activation of specific transcription factors that induce the transcription of IFN-I genes, the secretion of different IFN-I types and their recognition by the heterodimeric IFN-α/β receptor, the subsequent activation of JAK/STAT signaling pathways, and, finally, the transcription of many IFN-stimulated genes (ISGs). In sum, these cellular functions establish a so-called antiviral state in infected and neighboring cells. To counteract these cellular defense mechanisms, viruses have evolved diverse strategies and encode gene products that target antiviral responses. Among such immune-evasive factors are viral microRNAs (miRNAs) that can interfere with host gene expression. We discovered that multiple miRNAs of Epstein-Barr virus (EBV) control over a dozen cellular genes that contribute to the antiviral states of immune cells, specifically B cells and plasmacytoid dendritic cells (pDCs). We identified the viral DNA genome as the activator of IFN-α and question the role of abundant EBV EBERs, that, contrary to previous reports, do not have an apparent inducing function in the IFN-I pathway early after infection.


2020 ◽  
Author(s):  
Wang-Ting Lu ◽  
Chantel N. Trost ◽  
Hanna Müller-Esparza ◽  
Lennart Randau ◽  
Alan R. Davidson

ABSTRACTPhages and other mobile genetic elements express anti-CRISPR proteins (Acrs) to protect their genomes from destruction by CRISPR-Cas systems. Acrs usually block the ability of CRISPR-Cas systems to bind or cleave their nucleic acid substrates. Here, we investigate an unusual Acr, AcrIF9, that induces a gain-of-function to a type I-F CRISPR-Cas (Csy) complex, causing it to bind strongly to DNA that lacks both a PAM sequence and sequence complementarity. We show that specific and non-specific dsDNA compete for the same site on the Csy:AcrIF9 complex with rapid exchange, but specific ssDNA appears to still bind through complemetarity to the CRISPR RNA. We also demonstrate that induction of non-specific DNA-binding is a conserved property of diverse AcrIF9 homologues, implying that this activity contributes the biologically relevant function of this Acr family. AcrIF9 provides another example of the surprising variety of mechanisms by which Acrs inhibit CRISPR-Cas systems.


2020 ◽  
Author(s):  
Ole Kristian Greiner-Tollersrud ◽  
Vincent Boehler ◽  
Eva Bartok ◽  
Máté Krausz ◽  
Aikaterini Polyzou ◽  
...  

AbstractDeficiency of adenosine deaminase 2 (DADA2) is a severe, congenital syndrome, which manifests with hematologic, immunologic and inflammatory pathologies. DADA2 is caused by biallelic mutations in ADA2, but the function of ADA2, and the mechanistic link between ADA2 deficiency and the severe inflammatory phenotype remains unclear. Here, we show that monocyte-derived proteomes from DADA2 patients are highly enriched in interferon response proteins. Using immunohistochemistry and detailed glycan analysis we demonstrate that ADA2 is post-translationally modified for sorting to the lysosomes. At acidic, lysosomal pH, ADA2 acts as a novel DNase that degrades cGAS/Sting-activating ligands. Furthermore, we define a clear structure-function relationship for this acidic DNase activity. Deletion of ADA2 increased the production of cGAMP and type I interferons upon exposure to dsDNA, which was reverted by ADA2 overexpression or deletion of STING. Our results identify a new level of control in the nucleic acid sensing machinery and provide a mechanistic explanation for the pathophysiology of autoinflammation in DADA2.One Sentence SummaryADA2 is a lysosomal nuclease controlling nucleic acid sensing and type I interferon production.


Sign in / Sign up

Export Citation Format

Share Document