scholarly journals An anti-CRISPR protein induces strong non-specific DNA binding activity in a CRISPR-Cas complex

2020 ◽  
Author(s):  
Wang-Ting Lu ◽  
Chantel N. Trost ◽  
Hanna Müller-Esparza ◽  
Lennart Randau ◽  
Alan R. Davidson

ABSTRACTPhages and other mobile genetic elements express anti-CRISPR proteins (Acrs) to protect their genomes from destruction by CRISPR-Cas systems. Acrs usually block the ability of CRISPR-Cas systems to bind or cleave their nucleic acid substrates. Here, we investigate an unusual Acr, AcrIF9, that induces a gain-of-function to a type I-F CRISPR-Cas (Csy) complex, causing it to bind strongly to DNA that lacks both a PAM sequence and sequence complementarity. We show that specific and non-specific dsDNA compete for the same site on the Csy:AcrIF9 complex with rapid exchange, but specific ssDNA appears to still bind through complemetarity to the CRISPR RNA. We also demonstrate that induction of non-specific DNA-binding is a conserved property of diverse AcrIF9 homologues, implying that this activity contributes the biologically relevant function of this Acr family. AcrIF9 provides another example of the surprising variety of mechanisms by which Acrs inhibit CRISPR-Cas systems.

2013 ◽  
Vol 100 (2) ◽  
pp. 546-554 ◽  
Author(s):  
Rui Li ◽  
Yu Pan ◽  
Dan-Dan Shi ◽  
Yu Zhang ◽  
Jun Zhang

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2686-2686
Author(s):  
A.E. Schade ◽  
H. Szpurka ◽  
A. Jankowska ◽  
J. Bauer ◽  
E.D. Hsi ◽  
...  

Abstract Cytokine receptors preferentially associate with particular JAK-STAT combinations to transduce specific signals. For example, erythropoietin receptor (Epo-R) preferentially interacts with JAK2 to initiate signaling pathways via STAT5. The JAK2 V617F mutation (mJAK2) found in some myeloproliferative disorders (MPD) still requires binding to type I cytokine receptors to initiate signaling. Consequently, aberrant JAK-STAT signaling in MPD may require physiologic interactions with other pathways. Src family kinases (SFK) interact with various cytokine receptors resulting in close association between SFK and JAK-STAT pathways. We hypothesized that SFK activity plays a role in the activation of STAT5 and, given the importance of STAT5 in the pathogenesis of MPD, targeted inhibition of SFK could provide a novel therapeutic approach. First, we examined the effect the SFK inhibitors PP2 and SU6656 on the proliferation of the HEL cell line harboring mJAK2 and the Epo-dependent AML line UT7/Epo; SFK inhibition significantly diminished proliferation in both cell lines. These results imply that despite of the constitutive activity of mJAK2 or in the presence of Epo stimulated JAK2-STAT5 induction, SFK activation is required for proliferation. Since mJAK2 requires a functionally intact type I cytokine receptor, we examined Epo-R signaling in greater detail via phospho-specific immunoblotting. SFK inhibition resulted in diminished levels of phospho-SFK, coinciding with a similar degree of diminished phospho-STAT5. Simultaneously decreased induction of AKT and ERK pathways after SFK inhibition suggested SFK activity is also regulating a more global signaling network through the Epo-R. Inhibition of JAK2 activity potently suppressed phospho-STAT5, as well as ERK and AKT, without affecting SFK phosphorylation. Thus, SFK lies upstream of JAK2, or SFK and JAK2 may be regulating the second messenger pathways in parallel. In electrophoretic mobility shift assays to examine the effect of SFK inhibition on STAT5 DNA binding, SFK inhibition resulted in decreased STAT5 DNA binding despite constitutive activity of mJAK2. Analogous results were obtained after Epo stimulation in UT7/Epo cells. As expected, inhibition of JAK2 resulted in almost complete loss of STAT5 DNA binding. To confirm these results in primary cells, we examined the effects of SFK inhibition on primary monocytes from a patient with mJAK2. Stimulation with GM-CSF resulted in increased STAT5A DNA binding, but not STAT5B. In the presence of the SFK inhibitor PP2, GM-CSF induction of STAT5A DNA binding activity was completely inhibited. It is interesting to note that a key difference between STAT5A and STAT5B is the potential for ERK regulation of STAT5A DNA binding activity. Thus, showing here that SFK regulates ERK activity, and knowing that ERK activity can positively regulate STAT5A DNA binding, we propose a model in which SFK activity may modulate the JAK2-STAT5 signaling axis via the ERK pathway. In summary, our results demonstrate that while JAK2 is essential for this process, SFK activity appears to be necessary for full activation by positively modulating the JAK2-STAT5 axis. SFK inhibitors recently approved and in clinical trials may demonstrate efficacy in hematologic diseases characterized by aberrant JAK-STAT signaling, such as MPD.


2021 ◽  
Vol 49 (6) ◽  
pp. 3381-3393
Author(s):  
Wang-Ting Lu ◽  
Chantel N Trost ◽  
Hanna Müller-Esparza ◽  
Lennart Randau ◽  
Alan R Davidson

Abstract Phages and other mobile genetic elements express anti-CRISPR proteins (Acrs) to protect their genomes from destruction by CRISPR–Cas systems. Acrs usually block the ability of CRISPR–Cas systems to bind or cleave their nucleic acid substrates. Here, we investigate an unusual Acr, AcrIF9, that induces a gain-of-function to a type I-F CRISPR–Cas (Csy) complex, causing it to bind strongly to DNA that lacks both a PAM sequence and sequence complementarity. We show that specific and non-specific dsDNA compete for the same site on the Csy:AcrIF9 complex with rapid exchange, but specific ssDNA appears to still bind through complementarity to the CRISPR RNA. Induction of non-specific DNA-binding is a shared property of diverse AcrIF9 homologues. Substitution of a conserved positively charged surface on AcrIF9 abrogated non-specific dsDNA-binding of the Csy:AcrIF9 complex, but specific dsDNA binding was maintained. AcrIF9 mutants with impaired non-specific dsDNA binding activity in vitro displayed a reduced ability to inhibit CRISPR–Cas activity in vivo. We conclude that misdirecting the CRISPR–Cas complex to bind non-specific DNA is a key component of the inhibitory mechanism of AcrIF9. This inhibitory mechanism is distinct from a previously characterized anti-CRISPR, AcrIF1, that sterically blocks DNA-binding, even though AcrIF1and AcrIF9 bind to the same site on the Csy complex.


Virus Genes ◽  
2016 ◽  
Vol 52 (6) ◽  
pp. 797-805 ◽  
Author(s):  
Ruoxi Zhang ◽  
Liurong Fang ◽  
Wei Wu ◽  
Fuwei Zhao ◽  
Tao Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document