sequence complementarity
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 27)

H-INDEX

20
(FIVE YEARS 2)

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3097
Author(s):  
Mohammad Yahya Momin ◽  
Ravinder Reddy Gaddam ◽  
Madeline Kravitz ◽  
Anisha Gupta ◽  
Ajit Vikram

microRNAs (miRs) are emerging as attractive therapeutic targets because of their small size, specific targetability, and critical role in disease pathogenesis. However, <20 miR targeting molecules have entered clinical trials, and none progressed to phase III. The difficulties in miR target identification, the moderate efficacy of miR inhibitors, cell type-specific delivery, and adverse outcomes have impeded the development of miR therapeutics. These hurdles are rooted in the functional complexity of miR’s role in disease and sequence complementarity-dependent/-independent effects in nontarget tissues. The advances in understanding miR’s role in disease, the development of efficient miR inhibitors, and innovative delivery approaches have helped resolve some of these hurdles. In this review, we provide a multidisciplinary viewpoint on the challenges and opportunities in the development of miR therapeutics.


2021 ◽  
Author(s):  
Sonia Vela-Gallego ◽  
Zulay Pardo-Botero ◽  
Cristian Moya-Álamo ◽  
Andrés de la Escosura

Abstract A major challenge for understanding the origins of life is to explore how replication networks can engage in an evolutionary process. Herein, we shed light on this problem by implementing a network constituted by two different types of extremely simple biological components: the amino acid cysteine and the canonical nucleobases adenine and thymine, connected through amide bonds to the cysteine amino group and oxidation of its thiol into three possible disulfides. Supramolecular and kinetic analyses revealed that both self- and mutual interactions between such dinucleobase compounds drive their assembly and replication pathways. Those pathways involving sequence complementarity led to enhanced replication rates, suggesting a potential bias for selection. The interplay of synergistic dynamics and competition between replicators was then simulated in an open reactor with experimental kinetic data, showing the selective amplification of different species depending on the initial mixture composition. Overall, this network configuration can favor a collective adaptability to changes in the availability of feedstock molecules, with disulfide exchange reactions serving as 'wires' that connect the different individual auto- and cross-catalytic pathways.


2021 ◽  
Author(s):  
Nadeema Appukutti ◽  
Alex de Vries ◽  
Prashant Gudeangadi ◽  
Bini Claringbold ◽  
Michelle Garrett ◽  
...  

Development of the interplay between monomer sequence and supramolecular chemistry is critical if chemistry is to recapitulate the properties of proteins and nucleic acids in the synthetic world. We have created sequenced trimers of aromatic donor/acceptor units which participate in charge-transfer interactions, linked by phosphodiesters. Each sequence displays its own characteristic self-assembly, and moreover complementary sequences interact with each other to produce new nanostructures and emergent thermochromism. This finding paves the way towards new functional nanomaterials which make bio-analogous use of sequence to tune structure.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Biao Liu ◽  
Wei Xiang ◽  
Jiahao Liu ◽  
Jin Tang ◽  
Jinrong Wang ◽  
...  

AbstractAntisense long non-coding RNAs (antisense lncRNAs), transcribed from the opposite strand of genes with either protein coding or non-coding function, were reported recently to play a crucial role in the process of tumor onset and development. Functionally, antisense lncRNAs either promote or suppress cancer cell proliferation, migration, invasion, and chemoradiosensitivity. Mechanistically, they exert their regulatory functions through epigenetic, transcriptional, post-transcriptional, and translational modulations. Simultaneously, because of nucleotide sequence complementarity, antisense lncRNAs have a special role on its corresponding sense gene. We highlight the functions and molecular mechanisms of antisense lncRNAs in cancer tumorigenesis and progression. We also discuss the potential of antisense lncRNAs to become cancer diagnostic biomarkers and targets for tumor treatment.


Author(s):  
Yarong Lin ◽  
Yiwang Zhu ◽  
Yuchao Cui ◽  
Rui Chen ◽  
Zaijie Chen ◽  
...  

Abstract MicroRNAs (miRNAs) target specific mRNA molecules based on sequence complementarity for their degradation or translation repression, thereby regulating various development and physiological processes in eukaryotic orgasms. Expressing the target mimicry (MIM) and short tandem target mimicry (STTM), can block endogenous mature miRNAs activity and eliminate the inhibition to their target genes, resulting in phenotypic changes due to higher expression of the target genes. Here, we report a strategy to achieve de-repression of interested miRNA-target genes through CRISPR/Cas9-based generation of in-frame mutants within the miRNA-complementary sequence of the target gene. We show that two rice genes, OsGRF4 and OsGRF8 carrying in-frame mutants with disrupting the miR396 recognition sites, escape from miR396-mediated post-transcriptional silence, resulting in enlarged grain size and increased the brown planthopper (BPH) resistance in their respective rice transgenic lines. These results demonstrate that CRISPR/Cas9-mediated disruption of miRNA target sites can be effectively employed to precisely de-repress particular target genes of functional importance for trait improvement in plants.


2021 ◽  
Vol 22 (13) ◽  
pp. 7212
Author(s):  
Timo Schlemmer ◽  
Patrick Barth ◽  
Lisa Weipert ◽  
Christian Preußer ◽  
Martin Hardt ◽  
...  

The demonstration that spray-induced gene silencing (SIGS) can confer strong disease resistance, bypassing the laborious and time-consuming transgenic expression of double-stranded (ds)RNA to induce the gene silencing of pathogenic targets, was ground-breaking. However, future field applications will require fundamental mechanistic knowledge of dsRNA uptake, processing, and transfer. There is increasing evidence that extracellular vesicles (EVs) mediate the transfer of transgene-derived small interfering (si)RNAs in host-induced gene silencing (HIGS) applications. In this study, we establish a protocol for barley EV isolation and assess the possibilities for EVs regarding the translocation of sprayed dsRNA from barley (Hordeum vulgare) to its interacting fungal pathogens. We found barley EVs that were 156 nm in size, containing predominantly 21 and 19 nucleotide (nts) siRNAs, starting with a 5′-terminal Adenine. Although a direct comparison of the RNA cargo between HIGS and SIGS EV isolates is improper given their underlying mechanistic differences, we identified sequence-identical siRNAs in both systems. Overall, the number of siRNAs isolated from the EVs of dsRNA-sprayed barley plants with sequence complementarity to the sprayed dsRNA precursor was low. However, whether these few siRNAs are sufficient to induce the SIGS of pathogenic target genes requires further research. Taken together, our results raise the possibility that EVs may not be mandatory for the spray-delivered siRNA uptake and induction of SIGS.


Author(s):  
Victor Chinomso Ujor ◽  
Lien B. Lai ◽  
Christopher Chukwudi Okonkwo ◽  
Venkat Gopalan ◽  
Thaddeus Chukwuemeka Ezeji

Carbon catabolite repression (CCR) limits microbial utilization of lignocellulose-derived pentoses. To relieve CCR in Clostridium beijerinckii NCIMB 8052, we sought to downregulate catabolite control protein A (CcpA) using the M1GS ribozyme technology. A CcpA-specific ribozyme was constructed by tethering the catalytic subunit of Escherichia coli RNase P (M1 RNA) to a guide sequence (GS) targeting CcpA mRNA (M1GSCcpA). As negative controls, the ribozyme M1GSCcpA–Sc (constructed with a scrambled GSCcpA) or the empty plasmid pMTL500E were used. With a ∼3-fold knockdown of CcpA mRNA in C. beijerinckii expressing M1GSCcpA (C. beijerinckii_M1GSCcpA) relative to both controls, a modest enhancement in mixed-sugar utilization and solvent production was achieved. Unexpectedly, C. beijerinckii_M1GSCcpA–Sc produced 50% more solvent than C. beijerinckii_pMTL500E grown on glucose + arabinose. Sequence complementarity (albeit suboptimal) suggested that M1GSCcpA–Sc could target the mRNA encoding DNA integrity scanning protein A (DisA), an expectation that was confirmed by a 53-fold knockdown in DisA mRNA levels. Therefore, M1GSCcpA–Sc was renamed M1GSDisA. Compared to C. beijerinckii_M1GSCcpA and _pMTL500E, C. beijerinckii_M1GSDisA exhibited a 7-fold decrease in the intracellular c-di-AMP level after 24 h of growth and a near-complete loss of viability upon exposure to DNA-damaging antibiotics. Alterations in c-di-AMP-mediated signaling and cell cycling likely culminate in a sporulation delay and the solvent production gains observed in C. beijerinckii_M1GSDisA. Successful knockdown of the CcpA and DisA mRNAs demonstrate the feasibility of using M1GS technology as a metabolic engineering tool for increasing butanol production in C. beijerinckii.


2021 ◽  
Vol 22 (10) ◽  
pp. 5310
Author(s):  
Eduardo Luján-Soto ◽  
Vasti T. Juárez-González ◽  
José L. Reyes ◽  
Tzvetanka D. Dinkova

MicroRNAs (miRNAs) are small non-coding RNAs that regulate the accumulation and translation of their target mRNAs through sequence complementarity. miRNAs have emerged as crucial regulators during maize somatic embryogenesis (SE) and plant regeneration. A monocot-specific miRNA, mainly accumulated during maize SE, is zma-miR528. While several targets have been described for this miRNA, the regulation has not been experimentally confirmed for the SE process. Here, we explored the accumulation of zma-miR528 and several predicted targets during embryogenic callus induction, proliferation, and plantlet regeneration using the maize cultivar VS-535. We confirmed the cleavage site for all tested zma-miR528 targets; however, PLC1 showed very low levels of processing. The abundance of zma-miR528 slightly decreased in one month-induced callus compared to the immature embryo (IE) explant tissue. However, it displayed a significant increase in four-month sub-cultured callus, coincident with proliferation establishment. In callus-regenerated plantlets, zma-miR528 greatly decreased to levels below those observed in the initial explant. Three of the target transcripts (MATE, bHLH, and SOD1a) showed an inverse correlation with the miRNA abundance in total RNA samples at all stages. Using polysome fractionation, zma-miR528 was detected in the polysome fraction and exhibited an inverse distribution with the PLC1 target, which was not observed at total RNA. Accordingly, we conclude that zma-miR528 regulates multiple target mRNAs during the SE process by promoting their degradation, translation inhibition or both.


2021 ◽  
Vol 49 (6) ◽  
pp. 3381-3393
Author(s):  
Wang-Ting Lu ◽  
Chantel N Trost ◽  
Hanna Müller-Esparza ◽  
Lennart Randau ◽  
Alan R Davidson

Abstract Phages and other mobile genetic elements express anti-CRISPR proteins (Acrs) to protect their genomes from destruction by CRISPR–Cas systems. Acrs usually block the ability of CRISPR–Cas systems to bind or cleave their nucleic acid substrates. Here, we investigate an unusual Acr, AcrIF9, that induces a gain-of-function to a type I-F CRISPR–Cas (Csy) complex, causing it to bind strongly to DNA that lacks both a PAM sequence and sequence complementarity. We show that specific and non-specific dsDNA compete for the same site on the Csy:AcrIF9 complex with rapid exchange, but specific ssDNA appears to still bind through complementarity to the CRISPR RNA. Induction of non-specific DNA-binding is a shared property of diverse AcrIF9 homologues. Substitution of a conserved positively charged surface on AcrIF9 abrogated non-specific dsDNA-binding of the Csy:AcrIF9 complex, but specific dsDNA binding was maintained. AcrIF9 mutants with impaired non-specific dsDNA binding activity in vitro displayed a reduced ability to inhibit CRISPR–Cas activity in vivo. We conclude that misdirecting the CRISPR–Cas complex to bind non-specific DNA is a key component of the inhibitory mechanism of AcrIF9. This inhibitory mechanism is distinct from a previously characterized anti-CRISPR, AcrIF1, that sterically blocks DNA-binding, even though AcrIF1and AcrIF9 bind to the same site on the Csy complex.


Sign in / Sign up

Export Citation Format

Share Document