scholarly journals Balancing emergency message dissemination and network lifetime in wireless body area network using ant colony optimization and Bayesian game formulation

2017 ◽  
Vol 8 ◽  
pp. 60-65 ◽  
Author(s):  
R. Latha ◽  
P. Vetrivelan ◽  
M. Jagannath
Author(s):  
Suha Sahib Oleiwi ◽  
Ghassan N. Mohammed ◽  
Israa Al_Barazanchi

The wireless body area network (WBAN) has been proposed to offer a solution to the problem of population ageing, shortage in medical facilities and different chronic diseases. The development of this technology has been further fueled by the demand for real-time application for monitoring these cases in networks. The integrity of communication is constrained by the loss of packets during communication affecting the reliability of WBAN. Mitigating the loss of packets and ensuring the performance of the network is a challenging task that has sparked numerous studies over the years. The WBAN technology as a problem of reducing network lifetime; thus, in this paper, we utilize cooperative routing protocol (CRP) to improve package delivery via end-to-end latency and increase the length of the network lifetime. The end-to-end latency was used as a metric to determine the significance of CRP in WBAN routing protocols. The CRP increased the rate of transmission of packets to the sink and mitigate packet loss. The proposed solution has shown that the end-to-end delay in the WBAN is considerably reduced by applying the cooperative routing protocol. The CRP technique attained a delivery ratio of 0.8176 compared to 0.8118 when transmitting packets in WBAN.


2020 ◽  
Vol 14 ◽  
Author(s):  
Tejinder Kaur ◽  
Navneet Kaur ◽  
Gurleen Sidhu

: The expansion in an average lifetime and increased cost of health analysis have resulted in cost-effective methods for healthcare monitoring. Wireless Body Area Network (WBAN) is used for continuous monitoring of patient to enhance health care and quality of life. As the sensors worn on the human body have small size, low transmission power and restricted battery, it necessitates the development of energy efficient routing protocols for increasing the network lifetime. This paper proposes an Optimized Energy Efficient and Quality-of-Service aware Routing Protocol (OEEQR) to achieve longer network lifetime, energy efficiency, lower delay and high throughput. In the proposed protocol, the cost function with residual energy, distance and path loss as its parameters is optimized using Particle Swarm Optimization (PSO) technique. The proposed cost function determines the best feasible next hop to send the data to the sink.


Author(s):  
Shilpa Shinde ◽  
Santosh Sonavane

Background and objective: In the Wireless Body Area Network (WBAN) sensors are placed on the human body; which has various mobility patterns like seating, walking, standing and running. This mobility typically assisted with hand and leg movements on which most of the sensors are mounted. Previous studies were largely focused on simulations of WBAN mobility without focusing much on hand and leg movements. Thus for realistic studies on performance of the WBAN, it is important to consider hand and leg movements. Thus, an objective of this paper is to investigate an effect of the mobility patterns with hand movements on the throughput of the WBAN. Method: The IEEE 802.15.6 requirements are considered for WBAN design. The WBAN with star topology is used to connect three sensors and a hub. Three types of mobility viz. standing, walking and running with backward and forward hand movements is designed for simulation purpose. The throughput analysis is carried out with the three sets of simulations with standing, walking and running conditions with the speed of 0 m/s, 0.5 m/s and 3 m/s respectively. The data rate was increased from 250 Kb to 10000 Kb with AODV protocol. It is intended to investigate the effect of the hand movements and the mobility conditions on the throughput. Simulation results are analyzed with the aid of descriptive statistics. A comparative analysis between the simulated model and a mathematical model is also introduced to get more insight into the data. Results: Simulation studies showed that as the data rate is increased, throughput is also increased for all mobility conditions however, this increasing trend was discontinuous. In the standing (static) position, the throughput is found to be higher than mobility (dynamic) condition. It is found that, the throughput is better in the running condition than the walking condition. Average values of the throughput in case of the standing condition were more than that of the dynamic conditions. To validate these results, a mathematical model is created. In the mathematical model, a same trend is observed. Conclusion: Overall, it is concluded that the throughput is decreased due to mobility of the WBAN. It is understood that mathematical models have given more insight into the simulation data and confirmed the negative effect of the mobility conditions on throughput. In the future, it is proposed to investigate effect of interference on the designed network and compare the results.


Author(s):  
Suthisa Kesorn ◽  
Norakamon Wongsin ◽  
Thinnawat jangjing ◽  
Chatree Mahatthanajatuphat ◽  
Paitoon Rakluea

Sign in / Sign up

Export Citation Format

Share Document