Genome-wide association mapping for key seed metabolites using a large panel of natural and derived forms of Brassica rapa L.

2021 ◽  
Vol 159 ◽  
pp. 113073
Author(s):  
Snehdeep Kaur ◽  
Javed Akhatar ◽  
Harjeevan Kaur ◽  
Chhaya Atri ◽  
Meenakshi Mittal ◽  
...  
Genomics ◽  
2019 ◽  
Vol 111 (1) ◽  
pp. 90-95 ◽  
Author(s):  
Dongmei Li ◽  
Xue Zhao ◽  
Yingpeng Han ◽  
Wenbin Li ◽  
Futi Xie

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Philomin Juliana ◽  
Xinyao He ◽  
Muhammad R. Kabir ◽  
Krishna K. Roy ◽  
Md. Babul Anwar ◽  
...  

Abstract Wheat blast caused by the fungus Magnaporthe oryzae pathotype Triticum (MoT) is an emerging threat to wheat production. To identify genomic regions associated with blast resistance against MoT isolates in Bolivia and Bangladesh, we performed a large genome-wide association mapping study using 8607 observations on 1106 lines from the International Maize and Wheat Improvement Centre’s International Bread Wheat Screening Nurseries (IBWSNs) and Semi-Arid Wheat Screening Nurseries (SAWSNs). We identified 36 significant markers on chromosomes 2AS, 3BL, 4AL and 7BL with consistent effects across panels or site-years, including 20 markers that were significant in all the 49 datasets and tagged the 2NS translocation from Aegilops ventricosa. The mean blast index of lines with and without the 2NS translocation was 2.7 ± 4.5 and 53.3 ± 15.9, respectively, that substantiates its strong effect on blast resistance. Furthermore, we fingerprinted a large panel of 4143 lines for the 2NS translocation that provided excellent insights into its frequency over years and indicated its presence in 94.1 and 93.7% of lines in the 2019 IBWSN and SAWSN, respectively. Overall, this study reinforces the effectiveness of the 2NS translocation for blast resistance and emphasizes the urgent need to identify novel non-2NS sources of blast resistance.


3 Biotech ◽  
2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Kumari Shikha ◽  
J. P. Shahi ◽  
M. T. Vinayan ◽  
P. H. Zaidi ◽  
A. K. Singh ◽  
...  

Genome ◽  
2010 ◽  
Vol 53 (11) ◽  
pp. 884-898 ◽  
Author(s):  
Jianjun Zhao ◽  
Anna Artemyeva ◽  
Dunia Pino Del Carpio ◽  
Ram Kumar Basnet ◽  
Ningwen Zhang ◽  
...  

A Brassica rapa collection of 239 accessions, based on two core collections representing different morphotypes from different geographical origins, is presented and its use for association mapping is illustrated for flowering time. We analyzed phenotypic variation of leaf and seed pod traits, plant architecture, and flowering time using data collected from three field experiments and evaluated the genetic diversity with a set of SSR markers. The Wageningen University and Research Centre (WUR) and the Vavilov Research Institute of Plant Industry (VIR) core collections had similar representations of most morphotypes, as illustrated by the phenotypic and genetic variation within these groups. The analysis of population structure revealed five subgroups in the collection, whereas previous studies of the WUR core collection indicated four subgroups; the fifth group identified consisted mainly of oil accessions from the VIR core collection, winter oils from Pakistan, and a number of other types. A very small group of summer oils is described, that is not related to other oil accessions. A candidate gene approach was chosen for association mapping of flowering time with a BrFLC1 biallelic CAPS marker and a BrFLC2 multiallelic SSR marker. The two markers were significantly associated with flowering time, but their effects were confined to certain morphotypes and (or) alleles. Based on these results, we discuss the optimal design for an association mapping population and the need to fix the heterogeneous accessions to facilitate phenotyping and genotyping.


2017 ◽  
Vol 77 ◽  
pp. 211-218 ◽  
Author(s):  
Jieyun Li ◽  
Awais Rasheed ◽  
Qi Guo ◽  
Yan Dong ◽  
Jindong Liu ◽  
...  

Genomics ◽  
2019 ◽  
Vol 111 (6) ◽  
pp. 1794-1801 ◽  
Author(s):  
Nathanael Fickett ◽  
Andres Gutierrez ◽  
Mohit Verma ◽  
Michael Pontif ◽  
Anna Hale ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document