Synergistic effects of (3-mercaptopropyl)trimethoxysilane and citric acid on the improvement of water vapor barrier performance of polyvinyl alcohol/xylan packaging films

2021 ◽  
Vol 171 ◽  
pp. 113822
Author(s):  
Yining Wang ◽  
Xin Guo ◽  
Jinhui Li ◽  
Wenqian Jia ◽  
Fang Qian ◽  
...  
2020 ◽  
Vol 2 (11) ◽  
pp. 4405-4414
Author(s):  
Md Nuruddin ◽  
Deepa M. Korani ◽  
Hyungyung Jo ◽  
Reaz A. Chowdhury ◽  
Francisco J. Montes ◽  
...  

2014 ◽  
Vol 26 (19) ◽  
pp. 5459-5466 ◽  
Author(s):  
Federico Carosio ◽  
Samuele Colonna ◽  
Alberto Fina ◽  
Gaulthier Rydzek ◽  
Joseph Hemmerlé ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4447
Author(s):  
Chun-Tu Chou ◽  
Shih-Chen Shi ◽  
Chih-Kuang Chen

An environmentally friendly, hydrophobic polyvinyl alcohol (PVA) film was developed as an alternative to commercial straws for mitigating the issue of plastic waste. Nontoxic and biodegradable cellulose nanocrystals (CNCs) and nanofibers (CNFs) were used to prepare PVA nanocomposite films by blade coating and solution casting. Double-sided solution casting of polyethylene-glycol–poly(lactic acid) (PEG–PLA) + neat PLA hydrophobic films was performed, which was followed by heat treatment at different temperatures and durations to hydrophobize the PVA composite films. The hydrophobic characteristics of the prepared composite films and a commercial straw were compared. The PVA nanocomposite films exhibited enhanced water vapor barrier and thermal properties owing to the hydrogen bonds and van der Waals forces between the substrate and the fillers. In the sandwich-structured PVA-based hydrophobic composite films, the crystallinity of PLA was increased by adjusting the temperature and duration of heat treatment, which significantly improved their contact angle and water vapor barrier. Finally, the initial contact angle and contact duration (at the contact angle of 20°) increased by 35% and 40%, respectively, which was a significant increase in the service life of the biodegradable material-based straw.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 927
Author(s):  
Yuelong Zhao ◽  
Hui Sun ◽  
Biao Yang ◽  
Baomin Fan ◽  
Huijuan Zhang ◽  
...  

Hemicellulose is a kind of biopolymer with abundant resources and excellent biodegradability. Owing to its large number of polar hydroxyls, hemicellulose has a good barrier performance to nonpolar oxygen, making this biopolymer promising as food packaging material. Hydrophilic hydroxyls also make the polymer prone to water absorption, resulting in less satisfied strength especially under humid conditions. Thus, preparation of hemicellulose film with enhanced oxygen and water vapor barrier ability, as well as mechanical strength is still sought after. Herein, sodium trimetaphosphate (STMP) was used as esterification agent to form a crosslinked structure with hemicellulose through esterification reaction to render improved barrier performance by reducing the distance between molecular chains. The thus modified hemicellulose film achieved an oxygen permeability and water vapor permeability of 3.72 cm3 × μm × m−2 × d-1 × kPa−1 and 2.85 × 10−10 × g × m−1 × s−1 × Pa−1, respectively, at the lowest esterification agent addition of 10%. The crosslinked structure also brought good mechanical and thermal properties, with the tensile strength reaching 30 MPa, which is 118% higher than that of the hemicellulose film. Preliminary test of its application in apple preservation showed that the barrier film obtained can effectively slow down the oxidation and dehydration of apples, showing the prospect of application in the field of food packaging.


2016 ◽  
Vol 7 (2) ◽  
pp. 173 ◽  
Author(s):  
Silvio José Souza ◽  
Nicolli Grecco Marchiore ◽  
Marcella Vitória Galindo ◽  
Fabio Yamashita ◽  
Marianne Ayumi Shirai

In this work thermoplastic starch and poly(lactic acid) (PLA) sheets added of tributyl citrate (TBC) and citric acid was produced by flat extrusion (calendaring-extrusion). The incorporation of TBC and citric acid reduced the rigidity, increased the water vapor permeability (WVP) and density of the sheets. This occurred probably because these compounds acted as plasticizer for PLA and starch. Thus, it was possible to conclude that it was possible to produce starch and PLA blended sheets by extrusion, but studies are still required to find the appropriate concentration of TBC and citric acid that does not significantly impair the water vapor barrier properties.


Polymers ◽  
2017 ◽  
Vol 9 (12) ◽  
pp. 102 ◽  
Author(s):  
Zhijun Wu ◽  
Jingjing Wu ◽  
Tingting Peng ◽  
Yutong Li ◽  
Derong Lin ◽  
...  

2021 ◽  
pp. 51707
Author(s):  
Syeda Shamila Hamdani ◽  
Zhao Li ◽  
Ping Ruoqi ◽  
Emily Rollend ◽  
Muhammad Rabnawaz

Sign in / Sign up

Export Citation Format

Share Document