sodium trimetaphosphate
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 31)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 22 (23) ◽  
pp. 12726
Author(s):  
Gaspard Gerschenfeld ◽  
Rachida Aid ◽  
Teresa Simon-Yarza ◽  
Soraya Lanouar ◽  
Patrick Charnay ◽  
...  

Central nervous system (CNS) lesions are a leading cause of death and disability worldwide. Three-dimensional neural cultures in biomaterials offer more physiologically relevant models for disease studies, toxicity screenings or in vivo transplantations. Herein, we describe the development and use of pullulan/dextran polysaccharide-based scaffolds for 3D neuronal culture. We first assessed scaffolding properties upon variation of the concentration (1%, 1.5%, 3% w/w) of the cross-linking agent, sodium trimetaphosphate (STMP). The lower STMP concentration (1%) allowed us to generate scaffolds with higher porosity (59.9 ± 4.6%), faster degradation rate (5.11 ± 0.14 mg/min) and lower elastic modulus (384 ± 26 Pa) compared with 3% STMP scaffolds (47 ± 2.1%, 1.39 ± 0.03 mg/min, 916 ± 44 Pa, respectively). Using primary cultures of embryonic neurons from PGKCre, Rosa26tdTomato embryos, we observed that in 3D culture, embryonic neurons remained in aggregates within the scaffolds and did not attach, spread or differentiate. To enhance neuronal adhesion and neurite outgrowth, we then functionalized the 1% STMP scaffolds with laminin. We found that treatment of the scaffold with a 100 μg/mL solution of laminin, combined with a subsequent freeze-drying step, created a laminin mesh network that significantly enhanced embryonic neuron adhesion, neurite outgrowth and survival. Such scaffold therefore constitutes a promising neuron-compatible and biodegradable biomaterial.


Author(s):  
Yanjun Pan ◽  
Pengfei Li ◽  
Fubang Liang ◽  
Jingyi Zhang ◽  
Jiang Yuan ◽  
...  

Delayed chest closure (DSC) is widely performed during the treatment of congenital heart diseases. However, the high prevalence of surgical site infection (SSI) in patients undergoing DSC affects prognosis negatively. Herein, we designed a suturable poly (vinyl alcohol)/keratin film loaded with silver nanoparticles (AgNPs) as an alternative material for DSC, which was named PVA/Keratin/AgNPs. The PVA/Keratin/AgNPs films exhibited significantly enhanced mechanical strength after crosslinking by sodium trimetaphosphate (STMP). These films were non-toxic, and cells proliferated with good morphology after 1 week of culture. In addition, PVA/Keratin/AgNPs films provided superior antibacterial ability, as evidenced by the eradication and lower growth rate of Staphylococcus aureus and Escherichia coli. Finally, the PVA/Keratin/AgNPs films were demonstrated to successfully cover the chest cavity temporarily and protect the chest cavity from bacterial infection. These results indicated that the PVA/Keratin/AgNPs films have great prospects to be further exploited for clinical applications in DSC.


Author(s):  
C. K. K. Pereira ◽  
I. C. Leal ◽  
T. A. F. R. Nottingham ◽  
S. L. S. Pereira ◽  
D. L. F. Lima ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2899
Author(s):  
Eduardo P. Milan ◽  
Murilo Á. V. Rodrigues ◽  
Virginia C. A. Martins ◽  
Ana M. G. Plepis ◽  
Thomas Fuhrmann-Lieker ◽  
...  

In this study, a potential hard tissue substitute was mimicked using collagen/mangosteen porous scaffolds. Collagen was extracted from Tilapia fish skin and mangosteen from the waste peel of the respective fruit. Sodium trimetaphosphate was used for the phosphorylation of these scaffolds to improve the nucleation sites for the mineralization process. Phosphate groups were incorporated in the collagen structure as confirmed by their attenuated total reflection Fourier transform infrared (ATR-FTIR) bands. The phosphorylation and mangosteen addition increased the thermal stability of the collagen triple helix structure, as demonstrated by differential scanning calorimetry (DSC) and thermogravimetry (TGA) characterizations. Mineralization was successfully achieved, and the presence of calcium phosphate was visualized by scanning electron microscopy (SEM). Nevertheless, the porous structure was maintained, which is an essential characteristic for the desired application. The deposited mineral was amorphous calcium phosphate, as confirmed by energy dispersive X-ray spectroscopy (EDX) results.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 927
Author(s):  
Yuelong Zhao ◽  
Hui Sun ◽  
Biao Yang ◽  
Baomin Fan ◽  
Huijuan Zhang ◽  
...  

Hemicellulose is a kind of biopolymer with abundant resources and excellent biodegradability. Owing to its large number of polar hydroxyls, hemicellulose has a good barrier performance to nonpolar oxygen, making this biopolymer promising as food packaging material. Hydrophilic hydroxyls also make the polymer prone to water absorption, resulting in less satisfied strength especially under humid conditions. Thus, preparation of hemicellulose film with enhanced oxygen and water vapor barrier ability, as well as mechanical strength is still sought after. Herein, sodium trimetaphosphate (STMP) was used as esterification agent to form a crosslinked structure with hemicellulose through esterification reaction to render improved barrier performance by reducing the distance between molecular chains. The thus modified hemicellulose film achieved an oxygen permeability and water vapor permeability of 3.72 cm3 × μm × m−2 × d-1 × kPa−1 and 2.85 × 10−10 × g × m−1 × s−1 × Pa−1, respectively, at the lowest esterification agent addition of 10%. The crosslinked structure also brought good mechanical and thermal properties, with the tensile strength reaching 30 MPa, which is 118% higher than that of the hemicellulose film. Preliminary test of its application in apple preservation showed that the barrier film obtained can effectively slow down the oxidation and dehydration of apples, showing the prospect of application in the field of food packaging.


2021 ◽  
Vol 122 ◽  
pp. 105001
Author(s):  
Francyenne Maira Castro Gonçalves ◽  
Alberto Carlos Botazzo Delbem ◽  
Leonardo Fernandes Gomes ◽  
Nayara Gonçalves Emerenciano ◽  
Juliano Pelim Pessan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document