Gas and Water Vapor Barrier Performance of Cellulose Nanocrystal–Citric Acid-Coated Polypropylene for Flexible Packaging

2020 ◽  
Vol 2 (11) ◽  
pp. 4405-4414
Author(s):  
Md Nuruddin ◽  
Deepa M. Korani ◽  
Hyungyung Jo ◽  
Reaz A. Chowdhury ◽  
Francisco J. Montes ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 927
Author(s):  
Yuelong Zhao ◽  
Hui Sun ◽  
Biao Yang ◽  
Baomin Fan ◽  
Huijuan Zhang ◽  
...  

Hemicellulose is a kind of biopolymer with abundant resources and excellent biodegradability. Owing to its large number of polar hydroxyls, hemicellulose has a good barrier performance to nonpolar oxygen, making this biopolymer promising as food packaging material. Hydrophilic hydroxyls also make the polymer prone to water absorption, resulting in less satisfied strength especially under humid conditions. Thus, preparation of hemicellulose film with enhanced oxygen and water vapor barrier ability, as well as mechanical strength is still sought after. Herein, sodium trimetaphosphate (STMP) was used as esterification agent to form a crosslinked structure with hemicellulose through esterification reaction to render improved barrier performance by reducing the distance between molecular chains. The thus modified hemicellulose film achieved an oxygen permeability and water vapor permeability of 3.72 cm3 × μm × m−2 × d-1 × kPa−1 and 2.85 × 10−10 × g × m−1 × s−1 × Pa−1, respectively, at the lowest esterification agent addition of 10%. The crosslinked structure also brought good mechanical and thermal properties, with the tensile strength reaching 30 MPa, which is 118% higher than that of the hemicellulose film. Preliminary test of its application in apple preservation showed that the barrier film obtained can effectively slow down the oxidation and dehydration of apples, showing the prospect of application in the field of food packaging.


2016 ◽  
Vol 7 (2) ◽  
pp. 173 ◽  
Author(s):  
Silvio José Souza ◽  
Nicolli Grecco Marchiore ◽  
Marcella Vitória Galindo ◽  
Fabio Yamashita ◽  
Marianne Ayumi Shirai

In this work thermoplastic starch and poly(lactic acid) (PLA) sheets added of tributyl citrate (TBC) and citric acid was produced by flat extrusion (calendaring-extrusion). The incorporation of TBC and citric acid reduced the rigidity, increased the water vapor permeability (WVP) and density of the sheets. This occurred probably because these compounds acted as plasticizer for PLA and starch. Thus, it was possible to conclude that it was possible to produce starch and PLA blended sheets by extrusion, but studies are still required to find the appropriate concentration of TBC and citric acid that does not significantly impair the water vapor barrier properties.


2001 ◽  
Vol 1 (1) ◽  
pp. 51-60 ◽  
Author(s):  
J. Joutsensaari ◽  
P. Vaattovaara ◽  
M. Vesterinen ◽  
K. Hämeri ◽  
A. Laaksonen

Abstract. A novel method to characterize the organic composition of aerosol particles has been developed. The method is based on organic vapor interaction with aerosol particles and it has been named an Organic Tandem Differential Mobility Analyzer (OTDMA). The OTDMA method has been tested for inorganic (sodium chloride and ammonium sulfate) and organic (citric acid and adipic acid) particles. Growth curves of the particles have been measured in ethanol vapor and as a comparison in water vapor as a function of saturation ratio. Measurements in water vapor show that sodium chloride and ammonium sulfate as well as citric acid particles grow at water saturation ratios (S) of 0.8 and above, whereas adipic acid particles do not grow at S <  0.96. For sodium chloride and ammonium sulfate particles, a deliquescence point is observed at S = 0.75 and S = 0.79, respectively. Citric acid particles grow monotonously with increasing saturation ratios already at low saturation ratios and no clear deliquescence point is found. For sodium chloride and ammonium sulfate particles, no growth can be seen in ethanol vapor at saturation ratios below 0.93. In contrast, for adipic acid particles, the deliquescence takes place at around S = 0.95 in the ethanol vapor. The recrystallization of adipic acid takes place at S < 0.4. Citric acid particles grow in ethanol vapor similarly as in water vapor; the particles grow monotonously with increasing saturation ratios and no stepwise deliquescence is observed. The results show that the working principles of the OTDMA are operational for single-component aerosols. Furthermore, the results indicate that the OTDMA method may prove useful in determining whether aerosol particles contain organic substances, especially if the OTDMA is operated in parallel with a hygroscopicity TDMA, as the growth of many substances is different in ethanol and water vapors.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bedriye Ucpinar Durmaz ◽  
Ayse Aytac

Abstract Bio-based films containing poly (vinyl alcohol)/casein have poor mechanical and water vapor barrier properties that limit their use in packaging application. Some properties such as water resistance and tensile strength can be increased by the cross-linking process. For this reason, poly(vinyl alcohol)/sodium caseinate (PVA/SC) blends were crosslinked by adding glutaraldehyde (GLA) and glyoxal (GL) at different ratios in this work. The films were prepared by solution casting technique. Fourier transform infrared analysis (FTIR) confirmed the crosslinking reaction between the components. As a result of the crosslinking, the thicknesses, water vapor barrier properties and water contact angle values of the films have increased. The total soluble matters (TSM) of PVA/SC film decreased with increasing amounts of crosslinkers and GLA crosslinked films exhibited lower TSM. The addition of GLA and GL resulted in more strengthened films as verified by the tensile test. On the other hand, GLA crosslinked films were more flexible than un-crosslinked and GL crosslinked PVA/SC films. The hydrophilic PVA/SC film became more hydrophobic with the increasing amounts of crosslinkers. With the crosslinking, the PVA/SC film became more thermally stable. In conclusion, the crosslinked PVA/SC films were obtained with suitable properties for packaging applications.


2014 ◽  
Vol 6 (2) ◽  
pp. 1337-1337
Author(s):  
Gerald Findenig ◽  
Simon Leimgruber ◽  
Rupert Kargl ◽  
Stefan Spirk ◽  
Karin Stana-Kleinschek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document